Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 3CQ
(a)
To determine
The phase constant in equation 15.6.
(b)
To determine
The position of particle at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A body of mass m is suspended by a rod of length L that pivots without friction (as shown). The mass is slowly lifted along a circular arc to a height h.
a. Assuming the only force acting on the mass is the gravitational force, show that the component of this force acting along the arc of motion is F = mg sin u.
b. Noting that an element of length along the path of the pendulum is ds = L du, evaluate an integral in u to show that the work done in lifting the mass to a height h is mgh.
11.112 A model rocket is launched from point A with an initial velocity vo of 75 m/s. If the rocket's descent parachute does not deploy and the rocket lands a distance d = 100 m from A, determine (a) the angle a
that vo forms with the vertical, (b) the maximum height above point A reached by the rocket, (c) the duration of the flight.
Fig. P11.112
400 ft
Ex. 16 : A particle performing S.H.M. has a
velocity of 10 m/s, when it crosses the mean
position. If the amplitude of oscillation is 2 m,
find the velocity when it is midway between
mean and extreme position.
Chapter 15 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 15.1 - A block on the end of a spring is pulled to...Ch. 15.2 - Consider a graphical representation (Fig. 15.3) of...Ch. 15.2 - shows two curves representing particles undergoing...Ch. 15.2 - An object of mass m is hung from a spring and set...Ch. 15.4 - The ball in Figure 15.13 moves in a circle of...Ch. 15.5 - The grandfather clock in the opening storyline...Ch. 15 - Prob. 1OQCh. 15 - Prob. 2OQCh. 15 - Prob. 3OQCh. 15 - Prob. 4OQ
Ch. 15 - Prob. 5OQCh. 15 - Prob. 6OQCh. 15 - Prob. 7OQCh. 15 - Prob. 8OQCh. 15 - Prob. 9OQCh. 15 - Prob. 10OQCh. 15 - Prob. 11OQCh. 15 - Prob. 12OQCh. 15 - Prob. 13OQCh. 15 - Prob. 14OQCh. 15 - Prob. 15OQCh. 15 - Prob. 16OQCh. 15 - Prob. 17OQCh. 15 - Prob. 1CQCh. 15 - Prob. 2CQCh. 15 - Prob. 3CQCh. 15 - Prob. 4CQCh. 15 - Prob. 5CQCh. 15 - Prob. 6CQCh. 15 - Prob. 7CQCh. 15 - Prob. 8CQCh. 15 - Prob. 9CQCh. 15 - Prob. 10CQCh. 15 - Prob. 11CQCh. 15 - Prob. 12CQCh. 15 - Prob. 13CQCh. 15 - A 0.60-kg block attached to a spring with force...Ch. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - The position of a particle is given by the...Ch. 15 - A piston in a gasoline engine is in simple...Ch. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - Prob. 9PCh. 15 - Prob. 10PCh. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Review. A particle moves along the x axis. It is...Ch. 15 - Prob. 14PCh. 15 - A particle moving along the x axis in simple...Ch. 15 - The initial position, velocity, and acceleration...Ch. 15 - Prob. 17PCh. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - You attach an object to the bottom end of a...Ch. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - Prob. 23PCh. 15 - Prob. 24PCh. 15 - Prob. 25PCh. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - A simple harmonic oscillator of amplitude A has a...Ch. 15 - Review. A 65.0-kg bungee jumper steps off a bridge...Ch. 15 - Review. A 0.250-kg block resting on a...Ch. 15 - Prob. 32PCh. 15 - Prob. 33PCh. 15 - A seconds pendulum is one that moves through its...Ch. 15 - A simple pendulum makes 120 complete oscillations...Ch. 15 - A particle of mass m slides without friction...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - Prob. 38PCh. 15 - Prob. 39PCh. 15 - Consider the physical pendulum of Figure 15.16....Ch. 15 - Prob. 41PCh. 15 - Prob. 42PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - A watch balance wheel (Fig. P15.25) has a period...Ch. 15 - Prob. 46PCh. 15 - Prob. 47PCh. 15 - Show that the time rate of change of mechanical...Ch. 15 - Show that Equation 15.32 is a solution of Equation...Ch. 15 - Prob. 50PCh. 15 - Prob. 51PCh. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Considering an undamped, forced oscillator (b =...Ch. 15 - Prob. 55PCh. 15 - Prob. 56APCh. 15 - An object of mass m moves in simple harmonic...Ch. 15 - Prob. 58APCh. 15 - Prob. 59APCh. 15 - Prob. 60APCh. 15 - Four people, each with a mass of 72.4 kg, are in a...Ch. 15 - Prob. 62APCh. 15 - Prob. 63APCh. 15 - An object attached to a spring vibrates with...Ch. 15 - Prob. 65APCh. 15 - Prob. 66APCh. 15 - A pendulum of length L and mass M has a spring of...Ch. 15 - A block of mass m is connected to two springs of...Ch. 15 - Prob. 69APCh. 15 - Prob. 70APCh. 15 - Review. A particle of mass 4.00 kg is attached to...Ch. 15 - Prob. 72APCh. 15 - Prob. 73APCh. 15 - Prob. 74APCh. 15 - Prob. 75APCh. 15 - Review. A light balloon filled with helium of...Ch. 15 - Prob. 78APCh. 15 - A particle with a mass of 0.500 kg is attached to...Ch. 15 - Prob. 80APCh. 15 - Review. A lobstermans buoy is a solid wooden...Ch. 15 - Prob. 82APCh. 15 - Prob. 83APCh. 15 - A smaller disk of radius r and mass m is attached...Ch. 15 - Prob. 85CPCh. 15 - Prob. 86CPCh. 15 - Prob. 87CPCh. 15 - Prob. 88CPCh. 15 - A light, cubical container of volume a3 is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 11.10 The acceleration of a particle is directly proportional to the square of the time t. When t = 0, the particle is at x 24 m. Knowing that at t = 6 s, xr = 96 m and e = 18 m/s, express x and o in terms of t.arrow_forwardA particle moves with simple harmonic motion between two points which are 11.8 cm apart. At the instant when the particle is 2.0 cm from one of the points, its acceleration is 48.0 cms−2. Calculate the absolute value of the velocity of the particle at the same instant. Give your answer in m/s.arrow_forwardA block of mass m = 0.5 kg is attached to a horizontal spring whose spring constant is k = 50 N/m. At t = 0.1 s, the position is x = 0.30 m, and velocity is v = 2.65 m/s. a) Find the equation of position as a function of time in the form: x = Acos(wt + P) b) When does the condition x = 0.30 m, and v = -2.65 m/s. occur for the first time?arrow_forward
- The motion of a particle is given by x(t) = (25cm)cos(10t) where t is in s. what is the first time at which the kinetic energy is twice the potential energy?arrow_forwardA trolley with a mass m = 0.82 kg is attached to a spring with a spring coefficient k = 35 N / m in the practical laboratory. The trolley can slide along horizontal surfaces and after we stretch the spring the trolley oscillates between 20 cm and 70 cm on the track. (a) What is the oscillation frequency of the oscillation? (b) What is the oscillation time of the mass? (c) What is the result of the spring? (d) What is the maximum velocity of the carriage during the oscillating motion? (e) What is the maximum acceleration of the carriage during the oscillating motion?arrow_forwardThe plane curve described by the parametric equations x = 3 cos t and y = 3 sin t, 0≤ t < 2π, has a counterclockwise orientation. Alter one or both parametric equations so that you obtain the same plane curve with the opposite orientation.arrow_forward
- Please Asaparrow_forwardse Show that the (1, 0, 0) and (2, 0, 0) wave functions listed in Table 7.1 are properly normalized. CLarrow_forwardA 10-kg steel ball is tied to a string attached to a ceiling. If the length of the string is 45 cm, a) what is the time it would take the steel ball to complete one cycle? b) If the mass of the metal ball is doubled, what will be its period?Note: Answer it using GAFSA Format (Given, Asked, Formula, Solution, Answer)arrow_forward
- Q.3.: An oscillatory system is consisting of a mass m of 7.5 kg is attached to the foundation by a spring of a stiffness k 420 N/m. The system is under frictionless movement over a horizontal surface. The maximum amplitude of the mass from its equilibrium position is 12 cm. Calculate :- (a) The period of oscillation. (b) The maximum speed of the mass. (c) The maximum acceleration of the mass.arrow_forwardA 3 kg weight is attached to a spring with constant k = 27 kg/m and subjected to an external force F(t) = – 21 sin(4t) . The weight is initially displaced 2 meters above equilibrium and given an upward velocity of 5 m/s. Find its displacement for t > 0, with y(t) measured positive upwards. y(t) %3Darrow_forwardWhat is the maximum speed (in m/s) of a 4.3 g particle that oscillates between x = 2.0 mm and x = 8.0 mm in the diagram?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY