State the null and alternative hypothesis.
Find the degrees of freedom for the
Find the critical value of chi-square from Appendix E or from Excel’s
Calculate the chi-square test statistics at 0.05 level of significance.
Interpret the p-value.
Check whether the conclusion is sensitive to the level of significance chosen, identify the cells that contribute to the chi-square test statistic and check for the small expected frequencies.
Perform a two-tailed, two-sample z test for
Answer to Problem 30CE
The null hypothesis is:
And the alternative hypothesis is:
The degrees of freedom for the contingency table is 1.
The critical-value using EXCEL is 3.841.
The chi-square test statistics at 0.05 level of significance is 1.50.
The p-value for the hypothesis test is 0.221.
There is enough evidence to conclude that the correct response and type of cola are independent.
The conclusion is not sensitive to the level of significance chosen.
The cells (1, 1) and (1, 2) contribute the most to the chi-square test statistic.
There is no expected frequencies that are too small.
It is verified that
Explanation of Solution
The table summarizes the grade and order of papers handed in.
The claim is to test whether the data provide sufficient evidence to conclude that the grade and order handed in are independent. If the claim is rejected, then the grade and order handed in are not independent.
The test hypotheses are given below:
Null hypothesis:
Alternative hypothesis:
The degrees of freedom can be obtained as follows:
Substitute 2 for r and 2 for c.
Thus, the degrees of freedom for the contingency table is 1.
Procedure for critical-value using EXCEL:
Step-by-step software procedure to obtain critical-value using EXCEL software is as follows:
- Open an EXCEL file.
- In cell A1, enter the formula “=CHISQ.INV.RT(0.05,1)”
- Output using EXCEL software is given below:
Thus, the critical-value using EXCEL is 3.841.
Test statistic:
Software procedure:
Step by step procedure to obtain the chi-square test statistics and p-value using the MINITAB software:
- Choose Stat > Tables >Cross Tabulation and Chi-Square.
- Choose Row data (categorical variables).
- In Rows, choose Grade.
- In Columns, choose Order handed in.
- In Frequencies, choose Count.
- In Display, select Counts.
- In chi-square, select Chi-square test, Expected cell counts and Each cell’s contribution to chi-square.
- Click OK.
Output using the MINITAB software is given below:
Thus, the test statistic is 1.50 and the p-value for the hypothesis test is 0.221.
Rejection rule:
If the p-value is less than or equal to the significance level, then reject the null hypothesis
Conclusion:
Here, the p-value is greater than the level of significance.
That is,
Therefore, the null hypothesis is not rejected.
Thus, the data provide sufficient evidence to conclude that the correct response and type of cola are independent.
Take
Here, the p-value is greater than the level of significance.
That is,
Therefore, the null hypothesis is not rejected.
Thus, the data provide sufficient evidence to conclude that the correct response and type of cola are independent.
Thus, the conclusion is same for both the significance levels.
Hence, the conclusion is not sensitive to the level of significance chosen.
The cells (1, 1) and (1, 2) contribute the most to the chi-square test statistic.
Since all
Two-tailed, two-sample z test:
The test hypotheses are given below:
Null hypothesis:
Alternative hypothesis:
The proportion of “yes” responses to the regular cola is denoted as
Where
The proportion of number of “yes” responses to the diet cola is denoted as
Where
The pooled proportion is denoted as
Test statistic:
The z-test statistics can be obtained as follows:
Thus, the z-test statistic is –1.22.
The square of the z-test statistic is,
Thus the square of the z-test statistic is same as the chi-square statistics.
Procedure for p-value using EXCEL:
Step-by-step software procedure to obtain p-value using EXCEL software is as follows:
- Open an EXCEL file.
- In cell A1, enter the formula “=2*(1-NORM.S.DIST(–1.22,1))”
- Output using EXCEL software is given below:
Thus, the p-value using EXCEL is 1.778, which is not same as the p-value obtained in chi-square test. But the square of the z-test statistic is same as the chi-square statistics.
Thus, it is verified that
Want to see more full solutions like this?
Chapter 15 Solutions
Gen Combo Ll Applied Statistics In Business & Economics; Connect Access Card
- what is the correct answer and why?arrow_forward(a) How many bit strings of length 10 both begin with a 1 and end with 2 zeroes? (b) How many permutations of the letters PQRSTUV contain PRS and QV?arrow_forward(d) A clothing store sells red, white, green, orange and pink charms for a specialty bracelet. How many ways can a customer purchase a bracelet with (i) 16 charms? (ii) 27 charms with at least 3 of each colour?arrow_forward
- (d) Draw the Venn diagram which represents the set (A U B) U (B NC).arrow_forwardThe ages of undergraduate students at two universities (one in the east and one in the west) are being compared. Researchers want to know if there is a difference in the mean age of students at the two universities. The population standard deviations are known. The following data shows the results of samples collected at each institution: School Location n sample mean population std. dev. West 33 26.78 6.29 East 35 23.16 7.52 What is the value of the test statistic for this problem? what is the p-value? what is the decision (reject or do not reject the null hypothesis?arrow_forwardA common way for two people to settle a frivolous dispute is to play a game of rock-paper-scissors. In this game, each person simultaneously displays a hand signal to indicate a rock, a piece of paper, or a pair of scissors. Rock beats scissors, scissors beats paper, and paper beats rock. If both players select the same hand signal, the game results in a tie. Two roommates, roommate A and roommate B, are expecting company and are arguing over who should have to wash the dishes before the company arrives. Roommate A suggests a game of rock-paper-scissors to settle the dispute. Consider the game of rock-paper-scissors to be an experiment. In the long run, roommate A chooses rock 24% of the time, and roommate B chooses rock 85% of the time; roommate A selects paper 12% of the time, and roommate B selects paper 14% of the time; roommate A chooses scissors 64% of the time, and roommate B chooses scissors 1% of the time. (These choices are made randomly and independently of each…arrow_forward
- Perform the following hypothesis test: HO: µ = 6 H1: µ 6 The sample mean is 5.6, sample standard deviation of 1.5 and a sample size of 42. Use a 5% significance level. Need to answer the following questions: what is the value of the test statistic? what is the p-value for this test (round to 3 decimal places)? what is the decision (reject the null hypothesis or do not reject the null hypothesis)?arrow_forwardPerform the following hypothesis test of a proportion: HO: p = 0.125 HA: p 0.125 The sample proportion is 0.2 based on a sample size of 95. Use a 10% significance level. need to solve the following questions: what is the value of the test statistic? what is the p-value? what is the decision (reject the null hypothesis or do not reject the null hypothesis)?arrow_forwardOOOOOOO00 Let's play Pick-A-Ball with replacement! There are 10 colored balls: 2 red, 4 white, and 4 blue. The balls have been placed into a small bucket, and the bucket has been shaken thoroughly. You will be asked to reach into the bucket, without looking, and select two balls. Since the bucket has been shaken thoroughly, you can assume that each individual ball is selected at random with equal likelihood of being chosen. Now, close your eyes! Reach into the bucket, and pick a ball. (Click the red Pick-A-Ball! icon to select your ball.) Pick-A-Ball! What is the probability of selecting the color of ball that you just selected? (Enter your answer in decimal format and round it to two decimal places.) Assume you have put your first ball back into the bucket. Now, reach in (again, no peeking!), and pick your second ball. (Click the red Pick-A-Ball! icon to select your second ball.) Pick-A-Ball! What is the probability of selecting the color of ball that you just selected? (Enter your…arrow_forward
- There are 10 colored balls: 2 red, 4 white, and 4 blue. The balls have been placed into a small bucket, and the bucket has been shaken thoroughly. You will be asked to reach into the bucket, without looking, and select two balls. Since the bucket has been shaken thoroughly, you can assume that each individual ball is selected at random with likelihood of being chosen. Now, close your eyes! Reach into the bucket, and pick a ball. (Click the red Pick-A-Ball! icon to select your ball.) Pick-A-Ball! What is the probability of selecting the color of ball that you just selected? (Enter your answer in decimal format and round it to two decimal places.) Assume you have put your first ball back into the bucket. Now, reach in (again, no peeking!), and pick your second ball. (Click the red Pick-A-Ball! icon to select your second ball.) Pick-A-Ball! What is the probability of selecting the color of ball that you just selected? (Enter your answer in decimal format and round it to…arrow_forwardConsider a population that consists of the 70 students enrolled in a statistics course at a large university. If the university registrar were to compile the grade point averages (GPAs) of all 70 students in the course and compute their average, the result would be a mean GPA of 2.98. Note that this average is unknown to anyone; to collect the GPA information would violate the confidentiality of the students’ academic records. Suppose that the professor who teaches the course wants to know the mean GPA of the students enrolled in her course. She selects a sample of students who are in attendance on the third day of class. The GPAs of the students in the sample are: 3.71 3.92 3.68 3.60 3.64 3.27 3.93 3.12 3.40 3.74 The instructor uses the sample average as an estimate of the mean GPA of her students. The absolute value of the error in the instructor’s estimate is: 0.62 0.52 0.86 0.80 The portion of this error that is due to errors in data…arrow_forwardThe potential of using solar panels constructed above national highways to generate energy was explored in a particular engineering journal. Two-layer solar panels (with 1 meter separating the panels) were constructed above sections of both east-west and north-south highways in a certain country. The amount of energy (kilowatt-hours) supplied to the country's grid by the solar panels above the two types of highways was determined each month. The data for several randomly selected months are provided in the accompanying table. The researchers concluded that the two-layer solar panel energy generation is more viable for the north-south oriented highways as compared to east-west oriented roadways. Compare the mean solar energy amounts generated for the two types of highways using a 97% confidence interval. Does the interval support the researchers' conclusion? Click the icon to view the data table. Find a 97% confidence interval for μd. Let μd =μ₁₂, where μ₁ is the mean solar energy…arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL