Engineering Fundamentals: An Introduction to Engineering
Engineering Fundamentals: An Introduction to Engineering
6th Edition
ISBN: 9780357112311
Author: Saeed Moaveni
Publisher: Cengage Learning US
bartleby

Concept explainers

Question
Book Icon
Chapter 15, Problem 2P
To determine

Use MATLAB to create a Table and plot the relationship between height of the water above ground in the water tower and water pressure in pipeline at the base of the tower and also find the height of the water tower when the pressure 80psi is created.

Expert Solution & Answer
Check Mark

Answer to Problem 2P

The height of the water tower is approximately just below 190ft when the pressure 80psi is created.

Explanation of Solution

Given info:

The relationship between the pressure and height is given by,

P=ρgh (1)

Here,

P is the water pressure at the base of water in lbft2,

ρ is the density of water in slugsft3,

g is the acceleration due to gravity in fts2,

h is the altitude in ft.

ρ=1.94slugsft3g=32.2fts2

Calculation:

The steps to create the table and plot which shows the relationship between height and pressure in MATLAB are as follows,

  • Generate a range of values for the height by an increment of 10ft to find the pressure at different height.
  • Use the values of density and acceleration gravity in equation (1) to find the value of pressure.
  • To find the value of pressure in lbin2 divide the equation (1) by 144.
  • To print the value of pressure at the 2 decimal digit use “format bank” command.
  • Print the value of pressure for the range of height from 0to200ft by an increment of 10ft.

In the MATLAB script editor type the code as follows and save with a name of “unitconversion” as .m file, then execute the code to create the table and plot between height and pressure,

h=0:5:200;

P=(1.94)*(32.2)*(1/144)*h;

format bank

fprintf('\n-------------------------------------')

fprintf('\n\t\th(ft)\t\t\tP(lb/in^2)')

fprintf('\n--------------------------------------\n')

disp([h', P'])

fprintf('----------------------------------------')

plot(h,p)

xlabel('Height (m) ')

ylabel('Pressure (lb/in^2) ')

In the MATLAB command window the result will be displayed as follows,

-------------------------------------

h(ft)P(lb/in^2)

--------------------------------------

             0             0

          5.00          2.17

         10.00          4.34

         15.00          6.51

         20.00          8.68

         25.00         10.85

         30.00         13.01

         35.00         15.18

         40.00         17.35

         45.00         19.52

         50.00         21.69

         55.00         23.86

         60.00         26.03

         65.00         28.20

         70.00         30.37

         75.00         32.54

         80.00         34.70

         85.00         36.87

         90.00         39.04

         95.00         41.21

        100.00         43.38

        105.00         45.55

        110.00         47.72

        115.00         49.89

        120.00         52.06

        125.00         54.23

        130.00         56.39

        135.00         58.56

        140.00         60.73

        145.00         62.90

        150.00         65.07

        155.00         67.24

        160.00         69.41

        165.00         71.58

        170.00         73.75

        175.00         75.92

        180.00         78.08

        185.00         80.25

        190.00         82.42

        195.00         84.59

        200.00         86.76

----------------------------------------

And the plot will displays as shown in below Figure 1,

Engineering Fundamentals: An Introduction to Engineering, Chapter 15, Problem 2P

From the output of the MATLAB, the height of the water tower is approximately just below 190ft when the pressure 80psi(1lbin2=1psi) is created.

Conclusion:

Thus, the relationship between height of the water above ground in the water tower and water pressure in pipeline at the base of the tower is shown by creating a Table in MATLAB and the height of the water tower is approximately just below 190ft when the pressure 80psi is created.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A 15 in. x 26 in. rectangular RC beam (shown in figure below) supports a service uniform deadload of 1.3 kip/ft and a service uniform live load of 1.6 kip/ft. The dead load includes the beam’sself-weight. Design the reinforcement required for maximum moments and show the design insketches. Use f c ’ = 4,000 psi and f y = 60,000 psi. The beam is used in an open parking garage andis exposed to weather.a. Find factored maximum bending moments.b. Design for max. negative moment.c. Design for max. positive moment.Hint: Assume an initial beam shape (b, d), then solve for the needed reinforcements at the maximumnegative and positive factored bending mome
A structure is an intersecting hip roof with the main hip roof outside dimensions being 73 ft long and the width being 30 ft wide. The intersection portion extends 20 ft beyond the 30-ft side, and the intersecting portion is 20 ft wide. The overhang is 2 ft 6 in. and the slope is 5:12. The rafters are 16 in. on center. Based on the information provided, what is the total length of the common rafters in linear feet?
How many board feet is 200 lnft of 2 in. × 6 in wood studs.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning