
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
4th Edition
ISBN: 9780133953145
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 28EAP
To determine
The period of a 1.0-m-long pendulum on the earth and Venus.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Consider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the
supercooled water freezes at -10°C and 1 atm.
Useful data:
Cp (ice) = 38 J mol-1 K-1
Cp (water) 75J mol −1
K
-1
Afus H (0°C) 6026 J mol −1
Assume Cp (ice) and Cp (water) to be independent of temperature.
The molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol.
Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of
AvapG at 75.0°C, 80.09°C, and 85.0°C.
Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.
3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path
function, and in this problem, you will show an example of the entropy change for an ideal gas
being the same when you go between the same two states by two different pathways.
A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to
V2, at fixed particle number N and energy, U.
B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number
from N₁ to N2, at fixed volume V and energy U.
C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) →
(V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle
number changes at fixed volume. Again, assume energy is constant.
Chapter 15 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Ch. 15 - Prob. 1CQCh. 15 - A pendulum on Planet X, where the value of g is...Ch. 15 - FIGURE Q15.3 shows a position-versus-time graph...Ch. 15 - FIGURE Q15.4 shows a position-versus-time graph...Ch. 15 - 5. Equation 15.25 states that . What does this...Ch. 15 - A block oscillating on a spring has an amplitude...Ch. 15 - A block oscillating on a spring has a maximum...Ch. 15 - 8. The solid disk and circular hoop in FIGURE...Ch. 15 - FIGURE Q15.9 shows the potential-energy diagram...Ch. 15 - Suppose the damping constant b of an oscillator...
Ch. 15 - Prob. 11CQCh. 15 - 12. What is the difference between the driving...Ch. 15 - An air-track glider attached to a spring...Ch. 15 - An air-track is attached to a spring. The glider...Ch. 15 - Prob. 3EAPCh. 15 - An object in SHM oscillates with a period of 4.0 s...Ch. 15 - What are the (a) amplitude, (b) frequency, and (c)...Ch. 15 - What are the (a) amplitude, (b) frequency, and (c)...Ch. 15 - FIGURE EX15.7 is the Position-versus-time graph of...Ch. 15 - FIGURE EX15.8 is the velocity-versus-time graph of...Ch. 15 - An object in simple harmonic motion has an...Ch. 15 - An object in simple harmonic motion has amplitude...Ch. 15 - An object in simple harmonic motion has amplitude...Ch. 15 - An object in simple harmonic motion has amplitude...Ch. 15 - An air-track glider attached to a spring...Ch. 15 - 14. A block attached to a spring with unknown...Ch. 15 - 15. A 200 g air-track glider is attached to a...Ch. 15 - A 200 g mass attached to a horizontal spring...Ch. 15 - Prob. 17EAPCh. 15 - A 1.0 kg block is attached to a spring with spring...Ch. 15 - Prob. 19EAPCh. 15 - Prob. 20EAPCh. 15 - A spring is hanging from the ceiling. Attaching a...Ch. 15 - 22. A spring with spring constant 15 N/m hangs...Ch. 15 - 23. A spring is hung from the ceiling. When a...Ch. 15 - Prob. 24EAPCh. 15 - A 200 g ball is tied to a string. It is pulled to...Ch. 15 - Prob. 26EAPCh. 15 - Prob. 27EAPCh. 15 - Prob. 28EAPCh. 15 - Prob. 29EAPCh. 15 - A 100 g mass on a 1.0-m-long string is pulled 8.0...Ch. 15 - A uniform steel bar swings from a pivot at one end...Ch. 15 - Prob. 32EAPCh. 15 - Prob. 33EAPCh. 15 - Prob. 34EAPCh. 15 - Vision is blurred if the head is vibrated at 29 Hz...Ch. 15 - Prob. 36EAPCh. 15 - Prob. 37EAPCh. 15 - a. When the displacement of a mass on a spring is...Ch. 15 - For a particle in simple harmonic motion, show...Ch. 15 - A 100g block attached to a spring with spring...Ch. 15 - A 0.300 kg oscillator has a speed of 95.4cm/s when...Ch. 15 - An ultrasonic transducer, of the type used in...Ch. 15 - Astronauts in space cannot weigh themselves by...Ch. 15 - 44. Your lab instructor has asked you to measure a...Ch. 15 - A 5.0 kg block hangs from a spring with spring...Ch. 15 - Prob. 46EAPCh. 15 - A block hangs in equilibrium from a vertical...Ch. 15 - Prob. 48EAPCh. 15 -
49. Scientists are measuring the properties of a...Ch. 15 - Prob. 50EAPCh. 15 - A compact car has a mass of 1200 kg. Assume that...Ch. 15 - Prob. 52EAPCh. 15 - Prob. 53EAPCh. 15 - Prob. 54EAPCh. 15 - Prob. 55EAPCh. 15 - Prob. 56EAPCh. 15 - Prob. 57EAPCh. 15 - A uniform rod of mass M and length L swings as a...Ch. 15 - Prob. 59EAPCh. 15 - 60. A 500 g air-track glider attached to a spring...Ch. 15 - Prob. 61EAPCh. 15 - Prob. 62EAPCh. 15 - A molecular bond can be modeled as a spring...Ch. 15 - Prob. 64EAPCh. 15 - Prob. 65EAPCh. 15 - Prob. 66EAPCh. 15 - The 15 g head of a bobble-head doll oscillates in...Ch. 15 - An oscillator with a mass of 500 g and a period of...Ch. 15 - Prob. 69EAPCh. 15 - Prob. 70EAPCh. 15 - Prob. 71EAPCh. 15 - Prob. 72EAPCh. 15 - Prob. 73EAPCh. 15 - A block ona frictionless FIGURE P15.74 to two...Ch. 15 - Prob. 75EAPCh. 15 - Prob. 76EAPCh. 15 - A solid sphere of mass M and radius R is suspended...Ch. 15 - A uniform rod of length L oscillates as a pendulum...Ch. 15 - Prob. 79EAPCh. 15 - Prob. 80EAPCh. 15 - FIGURE CP15.81 shows a 200 g uniform rod pio4ed at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forward6. We used the constant volume heat capacity, Cv, when we talked about thermodynamic cycles. It acts as a proportionality constant between energy and temperature: dU = C₁dT. You can also define a heat capacity for constant pressure processes, Cp. You can think of enthalpy playing a similar role to energy, but for constant pressure processes δαρ C = (37) - Sup Ср ат P = ат Starting from the definition of enthalpy, H = U + PV, find the relationship between Cy and Cp for an ideal gas.arrow_forwardPure membranes of dipalmitoyl lecithin phospholipids are models of biological membranes. They melt = 41°C. Reversible melting experiments indicate that at Tm AHm=37.7 kJ mol-1. Calculate: A. The entropy of melting, ASm- B. The Gibbs free energy of melting, AGm- C. Does the membrane become more or less ordered upon melting? D. There are 32 rotatable CH2 CH2 bonds in each molecule that can rotate more freely if the membrane melts. What is the increase in multiplicity on melting a mole of bonds?arrow_forward
- 5. Heat capacity often has a temperature dependence for real molecules, particularly if you go over a large temperature range. The heat capacity for liquid n-butane can be fit to the equation Cp(T) = a + bT where a = 100 J K₁₁ mol¹ and b = 0.1067 J K² mol¹ from its freezing point (T = 140 K) to its boiling point (T₁ = 270 K). A. Compute AH for heating butane from 170 K to 270 K. B. Compute AS for the same temperature range.arrow_forward4. How much energy must be transferred as heat to cause the quasi-static isothermal expansion of one mole of an ideal gas at 300 K from PA = 1 bar to PB = 0.5 bar? A. What is VA? B. What is VB? C. What is AU for the process? D. What is AH for the process? E. What is AS for the process?arrow_forward1. The diagram shows the tube used in the Thomson experiment. a. State the KE of the electrons. b. Draw the path of the electron beam in the gravitational field of the earth. C. If the electric field directed upwards, deduce the direction of the magnetic field so it would be possible to balance the forces. electron gun 1KVarrow_forward
- as a hiker in glacier national park, you need to keep the bears from getting at your food supply. You find a campground that is near an outcropping of ice. Part of the outcropping forms a feta=51.5* slopeup that leads to a verticle cliff. You decide that this is an idea place to hang your food supply out of bear reach. You put all of your food into a burlap sack, tie a rope to the sack, and then tie a bag full of rocks to the other end of the rope to act as an anchor. You currently have 18.5 kg of food left for the rest of your trip, so you put 18.5 kg of rocks in the anchor bag to balance it out. what happens when you lower the food bag over the edge and let go of the anchor bag? Determine the acceleration magnitude a of the two-bag system when you let go of the anchor bag?arrow_forward2. A thin Nichrome wire is used in an experiment to test Ohm's law using a power supply ranging from 0 to 12 V in steps of 2 V. Why isn't the graph of I vs V linear? 1. Nichrome wire does obey Ohm's law. Explain how that can that be true given the results abovearrow_forward1. The average KE and temperature in Kelvin of the molecules of a gas are related by the equation KE = 3/2 KT where k is the Boltzmann constant 1.38 x 10 m² kg s². The diagram shows the energy levels for a Hydrogen atom. Energy/eV 0.00 -1.51 3.39 13.58 Use this information to show that Hydrogen at room temperature will not emit light. 2. When hydrogen burns in oxygen 241.8 kJ of energy are released per mole. Show that this reaction can produce light.arrow_forward
- 3. By using the fact that around any closed loop the sum of the EMFS = the sum of the PDs. Write equations for the two loops shown in the cct below. 40 ΔΩ I₂ 4V (loop1 20 (loop2) 2v I+12 Use these equations to show that the current flowing through the 20 resistor is 0.75Aarrow_forward5. A potential divider circuit is made by stretching a 1 m long wire with a resistance of 0.1 per cm from A to B as shown. 8V A 100cm B sliding contact 5Ω A varying PD is achieved across the 5 Q resistor by moving the slider along the resistance wire. Calculate the distance from A when the PD across the 5 Q resistor is 6 V.arrow_forward4. A voltmeter with resistance 10 kQ is used to measure the pd across the 1 kQ resistor in the circuit below. 6V 5ΚΩ 1ΚΩ V Calculate the percentage difference between the value with and without the voltmeter.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY