(a)
The maximum speed of the bob.
(a)
Answer to Problem 21P
The maximum speed of the bob is
Explanation of Solution
The formula to calculate amplitude is,
Here,
Substitute
The formula to calculate angular frequency is,
Here,
Substitute
The formula to calculate maximum speed is,
Substitute
Conclusion:
Therefore, the maximum speed of the bob is
(b)
The maximum acceleration of the bob.
(b)
Answer to Problem 21P
The maximum acceleration of the bob is
Explanation of Solution
The formula to calculate maximum acceleration of the bob is,
Substitute
Conclusion:
Therefore, the maximum acceleration of the bob is
(c)
The maximum restoring force of the bob.
(c)
Answer to Problem 21P
The maximum restoring force of the bob is
Explanation of Solution
The formula to calculate maximum restoring force of the bob is,
Here,
Substitute
Substitute
Conclusion:
Therefore, the maximum restoring force of the bob is
(d)
The maximum speed,
(d)
Answer to Problem 21P
The maximum speed of the bob is
Explanation of Solution
Consider the figure given below.
In triangle
The height of the bob is,
The law of conservation of energy is,
Substitute
Substitute
The formula for the moment of inertia of the pendulum is,
The equation for the conservation of energy is,
Here,
Substitute
Substitute
The force is maximum, when the angle is maximum.
The restoring force is calculated as,
Substitute
Conclusion:
Therefore, the maximum speed of the bob is
(e)
The answers of part (a), part (c) and part (d).
(e)
Explanation of Solution
The restoring force is defined as the force or torque that tends to restore a system to equilibrium after displacement.
The answers are closest but not exactly the same. The angular amplitude of
Conclusion:
Therefore, the answers are closest but not exactly the same.
Want to see more full solutions like this?
Chapter 15 Solutions
Physics for Scientists and Engineers
- We do not need the analogy in Equation 16.30 to write expressions for the translational displacement of a pendulum bob along the circular arc s(t), translational speed v(t), and translational acceleration a(t). Show that they are given by s(t) = smax cos (smpt + ) v(t) = vmax sin (smpt + ) a(t) = amax cos(smpt + ) respectively, where smax = max with being the length of the pendulum, vmax = smax smp, and amax = smax smp2.arrow_forwardA simple harmonic oscillator has amplitude A and period T. Find the minimum time required for its position to change from x = A to x = A/2 in terms of the period T.arrow_forwardA grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of the pendulum oscillation steady at 0.03 rad. What is the Q of the system?arrow_forward
- The amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?arrow_forwardConsider an undamped linear oscillator with a natural frequency ω0 = 0.5 rad/s and the step function a = 1 m/s2. Calculate and sketch the response function for an impulse forcing function acting for a time τ = 2π/ω0. Give a physical interpretation of the results.arrow_forwardConsider the data for a block of mass m = 0.250 kg given in Table P16.59. Friction is negligible. a. What is the mechanical energy of the blockspring system? b. Write expressions for the kinetic and potential energies as functions of time. c. Plot the kinetic energy, potential energy, and mechanical energy as functions of time on the same set of axes. Problems 5965 are grouped. 59. G Table P16.59 gives the position of a block connected to a horizontal spring at several times. Sketch a motion diagram for the block. Table P16.59arrow_forward
- The total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J. a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm? b. What is the potential energy of the system at this position? c. What is the position for which the potential energy of the system is equal to its kinetic energy? d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer. FIGURE P16.73arrow_forwardThe position of a particle attached to a vertical spring is given by y=(y0cost)j. The y axis points upward, y0 = 14.5 cm. and = 18.85 rad/s. Find the position of the particle at a. t = 0 and b. t = 9.0 s. Give your answers in centimeters.arrow_forwardA 50.0-g object connected to a spring with a force constant of 35.0 N/m oscillates with an amplitude of 4.00 cm on a frictionless, horizontal surface. Find (a) the total energy of the system and (b) the speed of the object when its position is 1.00 cm. Find (c) the kinetic energy and (d) the potential energy when its position is 3.00 cm.arrow_forward
- A uniform annular ring of mass m and inner and outer radii a and b, respectively, is pivoted around an axis perpendicular to the plane of the ring at point P (Fig. P16.35). Determine its period of oscillation. FIGURE P16.35arrow_forwardRefer to the problem of the two coupled oscillators discussed in Section 12.2. Show that the total energy of the system is constant. (Calculate the kinetic energy of each of the particles and the potential energy stored in each of the three springs, and sum the results.) Notice that the kinetic and potential energy terms that have 12 as a coefficient depend on C1 and 2 but not on C2 or 2. Why is such a result to be expected?arrow_forwardA block of unknown mass is attached to a spring with a spring constant of 6.50 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 30.0 cm/s. Calculate (a) the mass of the block, (b) the period of the motion, and (c) the maximum acceleration of the block.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University