
To explain: The reason behind the fossil fuels being the most prevalent source of energy, the formation of fossil fuels and the reason behind considering the fossil fuels as nonrenewable.

Answer to Problem 1TYC
As the fossil fuels are the highly combustible compounds which are formed from the organic matter which buried thousands of years ago, they store a large amount of energy. Even small quantity of fossil fuels produces a large amount of energy. Thus, the production of fossil fuels requires a lot of time and is considered as nonrenewable.
The production of fossil fuels requires specific environmental condition such as anaerobic conditions, pressure, temperature, and time; these are formed in specific location. The buried trees, phytoplankton, and zooplanktons undergo anaerobic decomposition which leads to the formation of kerogen. The pressure and heat alter the kerogen. The fossil fuels are formed by the decomposition of organic matter in absence of oxygen.
Explanation of Solution
The ultimate source of energy for all the living beings present on Earth is Sun. The solar radiation of the sun drives the water cycle, wind, photosynthesis and plants’ growth. The plants provide woods and biomass. The plants and organisms die, they get buried inside the sediments and their chemical energy is converted to fossil fuels.
The fossil fuels are the highly combustible compounds, which are formed by the burying of the dead organisms. The synthesis of fossil fuel takes thousands to millions of years. The reason behind the fossils being most prevalent source of energy is that they store a high amount of energy in them, which makes them efficient in burning, storing and shipping.
The fossil fuels are formed when the trees fell into the lakes or swamps and get buried inside the sediments or when the zooplanktons and the phytoplankton move to the floor of the oceans and get buried. The organic matter in the phytoplankton, zooplankton and the plants decompose in the anaerobic condition under the sediments, which leads to the formation of kerogen.
The fossil fuel formation requires certain specific environmental condition such as the anaerobic condition. Such kinds of conditions are present only in shallow seas, swamps, and lakes. The conversion of the organic matter to coal, crude oil, or natural gas depends on the chemical composition of matter, temperature, time, and presence, or absence of anaerobic decomposers.
When there occurs little decomposition of the organic matter because of the tight packing, coal is formed. The natural gas and crude oil are formed in the porous rock layers beneath the impervious layer and are formed because of the geothermal heating.
There are three different forms of fossil fuels which are utilized by humans, namely coal, oil and natural gas. These are produced from natural process and their production takes a very long time and once they will get depleted then, they will not be replaced within stipulated time period. To produce one gallon of natural oil, the biosphere takes thousands of years.
Want to see more full solutions like this?
Chapter 15 Solutions
Essential Environment: The Science Behind the Stories, Books a la Carte Edition (6th Edition)
- Question 6: Chlorine is widely used to purify municipal water supplies and to treat swimming pool waters. Suppose that the volume of a particular sample of Cl₂ gas is 8.70 L at 895 torr and 24°C. (a) How many grams of Cl₂ are in the sample? ⚫ Atomic mass of CI = 35.453 g/mol • Molar mass of Cl₂ = 2 x 35.453 = 70.906 g/mol Solution: Use the Ideal Gas Law: Step 1: Convert Given Values • Pressure: P = 895 torr → atm PV= = nRT 1 P = 895 × = 1.1789 atm 760 • Temperature: Convert to Kelvin: T24273.15 = 297.15 K • Gas constant: R = 0.0821 L atm/mol. K Volume: V = 8.70 L Step 2: Solve for n . PV n = RT n = (1.1789)(8.70) (0.0821)(297.15) 10.25 n = = 0.420 mol 24.405 Step 3: Calculate Mass of Cl₂ Final Answer: 29.78 g of Cl₂. mass nx M mass= (0.420)(70.906) mass= 29.78 garrow_forwardInstructions. "I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."arrow_forwardHow can I type the Java OOP code by using JOptionPane with this following code below: public static void sellCruiseTicket(Cruise[] allCruises) { //Type the code here }arrow_forward
- Please solve the highlighted question.arrow_forwardPearson eText Study Area mylabmastering.pearson.com Access Pearson P Pearson MyLab and Mastering Problem 14.78 P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... 2 of 8 Document Sharing User Settings The spring has a stiffness k = 200 N/m and an unstretched length of 0.5 m. It is attached to the 4.6-kg smooth collar and the collar is released from rest at A. Neglect the size of the collar. (Figure 1) Part A Determine the speed of the collar when it reaches B. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 με VB = Value Units Submit Request Answer Provide Feedback ? Review Next >arrow_forwardPearson eText Study Area Access Pearson mylabmastering.pearson.com P Pearson MyLab and Mastering Problem 15.79 P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... 6 of 8 > Document Sharing User Settings The two disks A and B have a mass of 4 kg and 5 kg, respectively. They collide with the initial velocities shown. The coefficient of restitution is e = 0.65. Suppose that (VA)1 = 6 m/s, (VB)1 = 8 m/s. (Figure 1) Part A Determine the magnitude of the velocity of A just after impact. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 μÅ (VA)2 = Value Units Submit Request Answer Part B ? Review Determine the angle between the x axis and the velocity of A just after impact, measured clockwise from the negative x axis. Express your answer in degrees to three significant figures. ΕΠΙ ΑΣΦ vec 01 Submit Request Answer Part C ? Determine the magnitude of the velocity of B just after impact. Express your answer to three significant…arrow_forward
- Pearson eText Study Area mylabmastering.pearson.com Access Pearson P Pearson MyLab and Mastering Problem 14.78 P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... 2 of 8 Document Sharing User Settings The spring has a stiffness k = 200 N/m and an unstretched length of 0.5 m. It is attached to the 4.6-kg smooth collar and the collar is released from rest at A. Neglect the size of the collar. (Figure 1) Part A Determine the speed of the collar when it reaches B. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 με VB = Value Units Submit Request Answer Provide Feedback ? Review Next >arrow_forwardHow can I type the Java OOP code with this following code below: public static void sellCruiseTicket(Cruise[] allCruises) { //Type the code here }arrow_forwardPearson eText Study Area Document Sharing User Settings mylabmastering.pearson.com Access Pearson P Pearson MyLab and Mastering Problem 15.96 Part A In (Figure 1), take m₁ = 3.4 kg and m = 4.8 kg. Figure 1 of 1 P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... 7 of 8 Determine the component of the angular momentum Ho of particle A about point O. Express your answer in kilogram-meters squared per second to three significant figures. (Ho) z = -ΜΕ ΑΣΦ vec Submit Request Answer Part B ? kg m2/s Determine the component of the angular momentum Ho of particle B about point O. Suppose that Express your answer in kilogram-meters squared per second to three significant figures. ΜΕ ΑΣΦ vec Symbols (Ho)z = Submit Request Answer Provide Feedback ? kg m2/s Review Next >arrow_forward
- Pearson eText Study Area Document Sharing User Settings mylabmastering.pearson.com Access Pearson P Pearson MyLab and Mastering Problem 14.69 Part A P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... 1 of 8 Review The 5-kg collar has a velocity of 7 m/s to the right when it is at A. It then travels down along the smooth guide shown in (Figure 1). The spring has an unstretched length of 100 mm and B is located just before the end of the curved portion of the rod. Determine the speed of the collar when it reaches point B, which is located just before the end of the curved portion of the rod. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 με v = Value Units Submit Request Answer Part B ? What is the normal force on the collar at this instant? Express your answer to three significant figures and include the appropriate units. ☐ μÅ ? N = Value Units Submit Request Answer Provide Feedback Next >arrow_forwardPearson eText Study Area mylabmastering.pearson.com Access Pearson P Pearson MyLab and Mastering Problem 15.106 P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... 8 of 8 Document Sharing User Settings The two spheres A and B each have a mass of 400 g. The spheres are fixed to the horizontal rods as shown in (Figure 1) and their initial velocity is 2 m/s. The mass of the supporting frame is negligible and it is free to rotate. Neglect the size of the spheres. Part A If a couple moment of M = 0.3 N · m is applied to the frame, determine the speed of the spheres in 3 s. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 ☐ ? v = Value Units Units input for part A Submit Request Answer Return to Assignment Provide Feedback ■Reviewarrow_forwardPearson eText Study Area Access Pearson mylabmastering.pearson.com P Pearson MyLab and Mastering Problem 15.79 P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... 6 of 8 > Document Sharing User Settings The two disks A and B have a mass of 4 kg and 5 kg, respectively. They collide with the initial velocities shown. The coefficient of restitution is e = 0.65. Suppose that (VA)1 = 6 m/s, (VB)1 = 8 m/s. (Figure 1) Part A Determine the magnitude of the velocity of A just after impact. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 μÅ (VA)2 = Value Units Submit Request Answer Part B ? Review Determine the angle between the x axis and the velocity of A just after impact, measured clockwise from the negative x axis. Express your answer in degrees to three significant figures. ΕΠΙ ΑΣΦ vec 01 Submit Request Answer Part C ? Determine the magnitude of the velocity of B just after impact. Express your answer to three significant…arrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY





