
A recent insurance industry report indicated that 40% of those persons involved in minor traffic accidents this year have been involved in at least one other traffic accident in the last 5 years. An advisory group decided to investigate this claim, believing it was too large. A sample of 200 traffic accidents this year showed 74 persons were also involved in another accident within the last 5 years. Use the .01 significance level.
- (a) Can we use z as the test statistic? Tell why or why not.
- (b) State the null hypothesis and the alternate hypothesis.
- (c) Show the decision rule graphically.
- (d) Compute the value of z and state your decision regarding the null hypothesis.
- (e) Determine and interpret the p-value.
a.

Check whether people can use z as the test statistic and explain the reason.
Answer to Problem 1SR
Yes, people can use z as the test statistic because both nπ and n (1–π) exceed 5.
Explanation of Solution
Requirements to check:
It is given that the sample size n is 100.
For
For
Hence, the requirements are satisfied for using the z-statistic as the binomial distribution.
b.

State the null and alternate hypotheses.
Explanation of Solution
In this case, the test is to check whether less than 40% of the persons involved in minor traffic accidents this year have been involved in at least one other traffic accident in the last 5 years.
Let π represents population proportion of persons involved in minor traffic accidents this year have been involved in at least one other traffic accident in the last 5 years.
Therefore, the null and alternate hypotheses are shown below:
c.

Show the decision rule graphically.
Explanation of Solution
Step-by-step procedure to show the decision rule graphically using MINITAB software:
- Choose Graph > Probability Distribution Plot > View Probability > OK.
- From Distribution, choose ‘Normal’ distribution.
- Enter Mean as 0 and Standard deviation as 1.
- Click the Shaded Area tab.
- Choose Probability and Left Tail for the region of the curve to shade.
- Enter the Probability as 0.01.
- Click OK.
Output using MINITAB software is obtained as follows:
From the output, the critical value is –2.326.
Therefore, the decision rule is rejecting the null hypothesis if test statistic is less than –2.326.
d.

Find the value of z-statistic and the write the decision regarding the null hypothesis.
Answer to Problem 1SR
The value of chi-square is –0.87.
Explanation of Solution
Calculation:
The sample size n is 200 and x is 74.
Step-by-step procedure to find the test statistic using MINITAB software:
- Choose Stat > Basic Statistics > 1 Proportion.
- Choose Summarized data.
- In Number of events, enter 74. In Number of trials, enter 200.
- Enter Hypothesized proportion as 0.40.
- Check Options, enter Confidence level as 99.0.
- Choose less than in alternative.
- Select Method as Normal approximation.
- Click OK in all dialogue boxes.
Output is obtained as follows:
From the output, the value of the test statistic is –0.87.
In this case, the critical values is –2.326 and the test statistic is –0.87.
Here, the test statistic value is less than the critical value.
That is, –0.87 > –2.326.
Therefore, do not reject the null hypothesis.
e.

Find and interpret the p-value.
Explanation of Solution
From the output of Part (d), it can be observed that the p-value is 0.193 and it is more than the level of significance. Therefore, there is no sufficient evidence to conclude that less than 40% of the persons involved in minor traffic accidents this year have been involved in at least one other traffic accident in the last 5 years.
Want to see more full solutions like this?
Chapter 15 Solutions
EBK STATISTICAL TECHNIQUES IN BUSINESS
- For a binary asymmetric channel with Py|X(0|1) = 0.1 and Py|X(1|0) = 0.2; PX(0) = 0.4 isthe probability of a bit of “0” being transmitted. X is the transmitted digit, and Y is the received digit.a. Find the values of Py(0) and Py(1).b. What is the probability that only 0s will be received for a sequence of 10 digits transmitted?c. What is the probability that 8 1s and 2 0s will be received for the same sequence of 10 digits?d. What is the probability that at least 5 0s will be received for the same sequence of 10 digits?arrow_forwardV2 360 Step down + I₁ = I2 10KVA 120V 10KVA 1₂ = 360-120 or 2nd Ratio's V₂ m 120 Ratio= 360 √2 H I2 I, + I2 120arrow_forwardQ2. [20 points] An amplitude X of a Gaussian signal x(t) has a mean value of 2 and an RMS value of √(10), i.e. square root of 10. Determine the PDF of x(t).arrow_forward
- In a network with 12 links, one of the links has failed. The failed link is randomlylocated. An electrical engineer tests the links one by one until the failed link is found.a. What is the probability that the engineer will find the failed link in the first test?b. What is the probability that the engineer will find the failed link in five tests?Note: You should assume that for Part b, the five tests are done consecutively.arrow_forwardProblem 3. Pricing a multi-stock option the Margrabe formula The purpose of this problem is to price a swap option in a 2-stock model, similarly as what we did in the example in the lectures. We consider a two-dimensional Brownian motion given by W₁ = (W(¹), W(2)) on a probability space (Q, F,P). Two stock prices are modeled by the following equations: dX = dY₁ = X₁ (rdt+ rdt+0₁dW!) (²)), Y₁ (rdt+dW+0zdW!"), with Xo xo and Yo =yo. This corresponds to the multi-stock model studied in class, but with notation (X+, Y₁) instead of (S(1), S(2)). Given the model above, the measure P is already the risk-neutral measure (Both stocks have rate of return r). We write σ = 0₁+0%. We consider a swap option, which gives you the right, at time T, to exchange one share of X for one share of Y. That is, the option has payoff F=(Yr-XT). (a) We first assume that r = 0 (for questions (a)-(f)). Write an explicit expression for the process Xt. Reminder before proceeding to question (b): Girsanov's theorem…arrow_forwardProblem 1. Multi-stock model We consider a 2-stock model similar to the one studied in class. Namely, we consider = S(1) S(2) = S(¹) exp (σ1B(1) + (M1 - 0/1 ) S(²) exp (02B(2) + (H₂- M2 where (B(¹) ) +20 and (B(2) ) +≥o are two Brownian motions, with t≥0 Cov (B(¹), B(2)) = p min{t, s}. " The purpose of this problem is to prove that there indeed exists a 2-dimensional Brownian motion (W+)+20 (W(1), W(2))+20 such that = S(1) S(2) = = S(¹) exp (011W(¹) + (μ₁ - 01/1) t) 롱) S(²) exp (021W (1) + 022W(2) + (112 - 03/01/12) t). where σ11, 21, 22 are constants to be determined (as functions of σ1, σ2, p). Hint: The constants will follow the formulas developed in the lectures. (a) To show existence of (Ŵ+), first write the expression for both W. (¹) and W (2) functions of (B(1), B(²)). as (b) Using the formulas obtained in (a), show that the process (WA) is actually a 2- dimensional standard Brownian motion (i.e. show that each component is normal, with mean 0, variance t, and that their…arrow_forward
- The scores of 8 students on the midterm exam and final exam were as follows. Student Midterm Final Anderson 98 89 Bailey 88 74 Cruz 87 97 DeSana 85 79 Erickson 85 94 Francis 83 71 Gray 74 98 Harris 70 91 Find the value of the (Spearman's) rank correlation coefficient test statistic that would be used to test the claim of no correlation between midterm score and final exam score. Round your answer to 3 places after the decimal point, if necessary. Test statistic: rs =arrow_forwardBusiness discussarrow_forwardBusiness discussarrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL


