College Physics: Explore And Apply, Volume 2 (2nd Edition)
College Physics: Explore And Apply, Volume 2 (2nd Edition)
2nd Edition
ISBN: 9780134862910
Author: Eugenia Etkina, Gorazd Planinsic, Alan Van Heuvelen, Gorzad Planinsic
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 15, Problem 1RQ

Review Question 15.1 Imagine that a balloon expands when brought from a cold garage into a warm room. Both the room and the garage are at atmospheric pressure. The change in the volume of the ballon is ΔV. What is the work that the air in the room does on the balloon during the process?

Expert Solution & Answer
Check Mark
To determine

The work done by air on the balloon, such that the balloon is expanding in a warm room after it is brought there from a cold garage, considering that the change in volume is ΔV and the pressure in the room as well as the garage is atmospheric pressure.

Answer to Problem 1RQ

Solution:

PatmΔV

Explanation of Solution

Introduction:

Work done by an environment on a system under consideration has a magnitude that is evaluated by multiplying the change in volume and the constant pressure acting on the system. It is important to understand that if the volume of the system increases, the work done by the environment on the system is negative and if the volume decreases, the work done is positive.

Explanation:

Consider the provided case, in which the gas in the balloon expands. So, as the gas expands, its volume increases and the gas does positive work on the environment, that is, the air at atmospheric pressure present in the room. As a result of this, the air in the warm room does the same amount of negative work on the gas in the balloon.

The work done by the environment on the gas at constant pressure is calculated using the expression:

WEnviornment on Gas = PatmΔV

Here, Patm is the atmospheric pressure.

Conclusion:

The work done by the air on the balloon is equal to PatmΔV.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Fresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of μm to one decimal point. Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point. Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct her version to a standard far point at infinity? Give your answer in diopter to one decimal point.
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of the plano-convex field flattener? (p written as rho )
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \).  (b) Repeat part (a) for 13 electrons.   Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.

Chapter 15 Solutions

College Physics: Explore And Apply, Volume 2 (2nd Edition)

Ch. 15 - Prob. 4MCQCh. 15 - 5. How much heat is stored in 10 kg of water at...Ch. 15 - We define the specific heat of a material as the...Ch. 15 - Prob. 7MCQCh. 15 - Figure Q15.8 shows a P-versus-V graph for two...Ch. 15 - 9. An electric heater is keeping the inside of a...Ch. 15 - Match each heating mechanism (left column) with a...Ch. 15 - 11. Your friend says, "Heat rises." Do you agree...Ch. 15 - Suggest practical ways for determining the...Ch. 15 - Suggest practical ways to measure heats of melting...Ch. 15 - Prob. 14CQCh. 15 - 15. Why does an egg take the same time interval to...Ch. 15 - Why does food cook faster in a pressure cooker...Ch. 15 - A potato into which several nails have been pushed...Ch. 15 - Explain why double-paned windows help reduce...Ch. 15 - 19. The water in a paper cup can be boiled by...Ch. 15 - Provide two reasons why blowing across hot soup or...Ch. 15 - 21. Placing a moistened finger in the wind can...Ch. 15 - Why does covering a keg of beer with wet towels on...Ch. 15 - 23. Explain why dogs can cool themselves by...Ch. 15 - 24. Some houses are heated by hot oil or water...Ch. 15 - If on a hot summer day you place one bare foot on...Ch. 15 - 26. A woman has a cup of hot coffee and a small...Ch. 15 - * EST Estimate the thermal energy of the air in...Ch. 15 - A balloon of volume 0.010 m3 is filled with 1.0...Ch. 15 - * Imagine that the helium balloon from the...Ch. 15 - 4. *You accidentally release a helium-filled...Ch. 15 - * Helium in a cylinder with a piston and initially...Ch. 15 - Prob. 7PCh. 15 - 8. * Jeopardy problem A gas process is described...Ch. 15 - 9. * Jeopardy problem A gas process is described...Ch. 15 - 10. Use the first law of thermodynamics to devise...Ch. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - 14 *You are making a table for specific heats of...Ch. 15 - Prob. 15PCh. 15 - 16. * BIO EST Body temperature change A drop in...Ch. 15 - 17. * BIO Temperature change of a person A 50-kg...Ch. 15 - Determine the amount of thermal energy provided by...Ch. 15 - 19. EST Estimate the time interval required for a...Ch. 15 - Prob. 20PCh. 15 - * BIO Exercising warms body A 50-kg woman...Ch. 15 - Prob. 22PCh. 15 - * You add 20C water to 0.20 kg of 40C soup After a...Ch. 15 - BIO Cooling a hot child A 30-kg child has a...Ch. 15 - Prob. 25PCh. 15 - 26. * You pour 250 g of tea into a Styrofoam cup,...Ch. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - 29. Determine the energy needed to change a...Ch. 15 - 30. * When of energy is removed from 0.60 kg of...Ch. 15 - Prob. 31PCh. 15 - C that must be added to a cup with 250 g of tea at...Ch. 15 - An ice-making machine removes thermal energy from...Ch. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - 36. How much energy is required to convert (a)...Ch. 15 - 37. Cooling with alcohol rub During a back rub, 80...Ch. 15 - 38. Energy in a lightning flash A lightning flash...Ch. 15 - 39 A kettle containing 0.75 kg of boiling water...Ch. 15 - Prob. 40PCh. 15 - * EST Energy changes when it rains Estimate the...Ch. 15 - 42. * Insulating a house You insulate your house...Ch. 15 - C and the outside temperature is -10C?Ch. 15 - Prob. 44PCh. 15 - 45. While blowing across the bowl of soup in the...Ch. 15 - Prob. 46PCh. 15 - BIO Marathon You are training for a marathon While...Ch. 15 - Prob. 48PCh. 15 - 49. * A canteen is covered with wet canvas. If 15...Ch. 15 - * EST Evaporative cooling Each year a layer of...Ch. 15 - Prob. 51PCh. 15 - BIO Tree leaf A tree leaf of mass of 0.80 g and...Ch. 15 - Warming a spaceship Your friend says that natural...Ch. 15 - Prob. 54PCh. 15 - Which is less dense: dry or wet air? Explain your...Ch. 15 - * BIO Losing liquid while running While running,...Ch. 15 - Prob. 57PCh. 15 - 58. ** EST Global climate change Assume that...Ch. 15 - Prob. 59PCh. 15 - * Standard house 2 On the same day in the same...Ch. 15 - * Standard house 3 Suppose that the following...Ch. 15 - Prob. 62PCh. 15 - ** BIO EST Metabolism warms bedroom Because of its...Ch. 15 - Prob. 65GPCh. 15 - * EST House ventilation For purposes of...Ch. 15 - Prob. 67GPCh. 15 - ** EST Heating an event center with metabolic...Ch. 15 - Prob. 70RPPCh. 15 - Prob. 71RPPCh. 15 - Prob. 72RPPCh. 15 - Prob. 73RPPCh. 15 - Prob. 74RPPCh. 15 - Prob. 75RPPCh. 15 - Prob. 76RPPCh. 15 - Prob. 77RPPCh. 15 - Prob. 78RPPCh. 15 - Prob. 79RPPCh. 15 - Prob. 80RPP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY