
(a)
Whether the statement “The level curves of
(a)

Answer to Problem 1RE
The statement is true.
Explanation of Solution
The given function is,
Let
Take log on both sides.
Here,
Therefore, the statement is true.
(b)
Whether the equation
(b)

Answer to Problem 1RE
The statement is false.
Explanation of Solution
Given:
The equation is
Calculation:
The given equation is
When
The functions are
Therefore, the statement is false.
(c)
Whether the function f satisfies the derivative
(c)

Answer to Problem 1RE
The statement is false.
Explanation of Solution
Let the function f has a continuous partial derivatives of all orders.
Then prove that
For example, assume
Obtain the value of
Take partial derivative of the function f with respect to x and obtain
Thus,
Take partial derivative of the equation (1) with respect to x and obtain
Hence,
Again, take partial derivative for the equation (2) with respect to y and obtain
Therefore,
Obtain the value of
Take partial derivative of the function f with respect to y and obtain
Thus,
Take partial derivative of the equation (1) with respect to y and obtain
Hence,
Again, take partial derivative for the equation (2) with respect to x and obtain
Therefore,
From above, it is concluded that
Thus,
Therefore, the statement is false.
(d)
Whether the gradient
(d)

Answer to Problem 1RE
The statement is false.
Explanation of Solution
Given:
The surface is
Theorem used:
The Gradient and Level Curves:
“Given a function f differentiable at
Description:
The given surface is
By above theorem, it can be concluded that the line tangent to the level curve of f at
Thus, it does not satisfy the given statement. Because, it is given that the gradient
Here,
Therefore, the statement is false.
Want to see more full solutions like this?
Chapter 15 Solutions
Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
Additional Math Textbook Solutions
College Algebra (7th Edition)
Pre-Algebra Student Edition
Calculus: Early Transcendentals (2nd Edition)
Introductory Statistics
University Calculus: Early Transcendentals (4th Edition)
- Solve please thanks!arrow_forwardSolve please and thank youarrow_forwardAccording to Newton's law of universal gravitation, the force F between two bodies of constant mass GmM m and M is given by the formula F = , where G is the gravitational constant and d is the d² distance between the bodies. a. Suppose that G, m, and M are constants. Find the rate of change of force F with respect to distance d. F' (d) 2GmM b. Find the rate of change of force F with gravitational constant G = 6.67 × 10-¹¹ Nm²/kg², on two bodies 5 meters apart, each with a mass of 250 kilograms. Answer in scientific notation, rounding to 2 decimal places. -6.67x10 N/m syntax incomplete.arrow_forward
- Solve please and thank youarrow_forwardmv2 The centripetal force of an object of mass m is given by F (r) = rotation and r is the distance from the center of rotation. ' where v is the speed of r a. Find the rate of change of centripetal force with respect to the distance from the center of rotation. F(r) b. Find the rate of change of centripetal force of an object with mass 500 kilograms, velocity of 13.86 m/s, and a distance from the center of rotation of 300 meters. Round to 2 decimal places. N/m (or kg/s²) F' (300)arrow_forwardSolve work shown please and thanks!arrow_forward
- Given the following graph of the function y = f(x) and n = = 6, answer the following questions about the area under the curve from x graph to enlarge it.) 1 (Round your answer to within two decimal places if necessary, but do not round until your final computation.) a. Use the Trapezoidal Rule to estimate the area. Estimate: T6 G b. Use Simpson's Rule to estimate the area. Estimate: S6 - ID = 0 to x = 6. (Click on aarrow_forward"Solve the following differential equation using the Operator Method and the Determinant Method:" Solve by dr no ai """'+3y"" + 3y+y=arrow_forward(4,4) M -4 2 2 -4 (-4,-4) 4 8 10 12 (8,-4) (12,-4) Graph of f The figure shows the graph of a piecewise-linear function f. For −4≤x≤12, the function g is x defined by g(x) = √ƒ (t)dt . . Find the value of g(6). Find the value of g'(6). |arrow_forward
- PREVIOUS ANSWERS ASK YOUR TEACHER PRACTICE ANOTHER Find the derivative of the function. f'(x) = X x + √3x f(x) = 3x-5 (3√√3x+11√√x+5√3 2√√x (3x-5)² Need Help? Read It SUBMIT ANSWERarrow_forwardPREVIOUS ANSWERS ASK YOUR TEACHER PRACTICE A Find the derivative of the function and evaluate f'(x) at the given val f(x) = (√√√x + 3x) (x3/2 - x); x = 1 f'(x) = 9x 412 (12x (13) 2 - 4x-3√√√x f'(1) = 2 Need Help? Read It Watch It SUBMIT ANSWERarrow_forwardConsider the following functions. g(x) = x + √3x h(x) = 3x-5 x + √3x f(x) = = 3x-5 Find the derivative of each function. g'(x) h'(x) = = f'(x) = 3 = +1 2√3x 3 (3√3x + 10√√x +5√√√3 2√√x (3x-5)² Need Help? Read It SUBMIT ANSWERarrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
