How many electrons can occupy the first shell? How many can occupy the second shell?
The number of electrons that can occupy first shell and second shell.
Answer to Problem 1RCQ
Solution:
Two electrons can occupy the first shell and eight electrons can occupy the second shell.
Explanation of Solution
In structure of Atom, electrons are found inside the shells. The shells represents the primary energy levels of an atom. Each shell has a set of sub-shells which represents various energy levels of the shells. Each sub-shell (except s-subshell) has further divided on the basis of energy levels – which are called “orbitals”.
Quantum numbers illustrates the possible energy levels and sub-energy levels of an atom. The four types of quantum numbers are – Principal quantum number, Angular quantum number, Magnetic quantum number and Spin quantum number.
Principal quantum number correlates to the possible number of shells in an atom. It is designated as ‘n’. The shells are represented as numerical positive integers 1, 2, 3, etc or alphabetically – K, L, M, N etc.
Angular quantum number gives the energy levels within the shell – which is also known as sub-shells. It also represents the shape of the sub-shells. Accordingly K-shell has only one sub-shell termed as‘s’. L-subshell has 2 sub-shells that are‘s’ and ‘p’. M-shell has 3 sub-shells that are termed as‘s’, ‘p’ and‘d’ and so on.
Magnetic quantum number explains about the possible energy levels of the sub-shells. They are called “orbitals”.
Spin quantum number represents the spin of the electron that occupy in the orbital.
According to Aufbau’s principle, electrons are occupied from the lowest energy level to highest energy level.
According to Hund’s rule, electrons are singly occupied in all the orbitals of the sub-shells and all those electrons have parallel spin. After the electrons are singly occupied, electrons further occupy the singly filled orbitals with opposite spin. This relates to Pauli’s exclusion principle which states an orbital can have only two electrons which must have opposite spins with respect to each other.
Each orbital can accommodate two electrons of opposite spins. The first shell has one s-orbital and 2 electrons are occupied in it. The second shell has 2 sub-shells – s and p. Six electrons are occupied in the 3 p-orbitals as two electrons per p-orbital. Further the p-subshell also has an s-orbital and 2 electrons can be occupied there. Totally 8 electrons can occupy the second shell.
Conclusion:
The number of electrons that can occupy first shell and second shell have been determined
Want to see more full solutions like this?
Chapter 15 Solutions
Conceptual Phy. Sci. - With Access (Custom)
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Chemistry: Structure and Properties (2nd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Microbiology with Diseases by Body System (5th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- The magnitude of the force between a pair of point charges is proportional to the product of the magnitudes of their charges and inversely proportional to the square of their separation distance. Four distinct charge-pair arrangements are presented. All charges are multiples of a common positive charge, q. All charge separations are multiples of a common length, L. Rank the four arrangements from smallest to greatest magnitude of the electric force.arrow_forwardA number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q (upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardA collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forward
- In Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forwardA conducting sphere is mounted on an insulating stand, and initially it is electrically neutral. A student wishes to induce a charge distribution similar to what is shown here. The student may connect the sphere to ground or leave it electrically isolated. The student may also place a charged insulated rod near to the sphere without touching it. Q. The diagrams below indicate different choices for whether or not to include a ground connection as well as the sign of the charge on and the placement of an insulating rod. Choose a diagram that would produce the desired charge distribution. (If there are multiple correct answers, you need to select only one of them.)arrow_forwardA person is making pancakes and tries to flip one in the pan. The person is holding the pan a distance y0 = 1.10 m above the ground when they launch the pancake. The pancake just barely touches the ceiling, which is at a height y = 2.47 m above the ground. A) What must be the initial velocity of the pancake to reach that height? B) This person, shocked that they almost hit the ceiling, does not catch it on the way down and the pancake hits the floor. Assuming up as the positive direction, what is the velocity of the pancake when it hits the floor, ruining breakfast and this person’s day?arrow_forward
- One of Spider-Man’s less talked about powers is that he can jump really high. In the comics Spider-Man can jump upwards 3 stories. A) If Spider-Man leaves the ground at 14.3 m/s, how high can he get? y= B) If Spider-Man jumps directly upwards with the initial velocity used above and then returns to the ground, what total amount of time does he spend airborn? t=arrow_forwardAn insulating rod is positively charged, and an electrically neutral conducting sphere is mounted on an insulating stand. The rod is brought near to the sphere on the right, but they never actually touch. Q. Select the image that best represents the resulting charge distribution on the conducting sphere.arrow_forwardThis is a multi-part problem. For each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forward
- Blue light has a wavelength of 485 nm. What is the frequency of a photon of blue light? Question 13 Question 13 What is the wavelength of radiofrequency broadcast of 104 MHz? Question 14 Question 14 1 Point 3. The output intensity from an x-ray exposure is 4 mGy at 90 cm. What will the intensity of the exposure be at 180 cm? Question 15 Question 15 1 Point What is the frequency of an 80 keV x-ray?arrow_forwardUnder what condition is IA - BI = A + B? Vectors À and B are in the same direction. Vectors À and B are in opposite directions. The magnitude of vector Vectors À and 官 B is zero. are in perpendicular directions.arrow_forwardFor the vectors shown in the figure, express vector 3 in terms of vectors M and N. M S =-M+ Ň == S=м- Ñ S = M +Ñ +Narrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning