
How many electrons can occupy the first shell? How many can occupy the second shell?

The number of electrons that can occupy first shell and second shell.
Answer to Problem 1RCQ
Solution:
Two electrons can occupy the first shell and eight electrons can occupy the second shell.
Explanation of Solution
In structure of Atom, electrons are found inside the shells. The shells represents the primary energy levels of an atom. Each shell has a set of sub-shells which represents various energy levels of the shells. Each sub-shell (except s-subshell) has further divided on the basis of energy levels – which are called “orbitals”.
Quantum numbers illustrates the possible energy levels and sub-energy levels of an atom. The four types of quantum numbers are – Principal quantum number, Angular quantum number, Magnetic quantum number and Spin quantum number.
Principal quantum number correlates to the possible number of shells in an atom. It is designated as ‘n’. The shells are represented as numerical positive integers 1, 2, 3, etc or alphabetically – K, L, M, N etc.
Angular quantum number gives the energy levels within the shell – which is also known as sub-shells. It also represents the shape of the sub-shells. Accordingly K-shell has only one sub-shell termed as‘s’. L-subshell has 2 sub-shells that are‘s’ and ‘p’. M-shell has 3 sub-shells that are termed as‘s’, ‘p’ and‘d’ and so on.
Magnetic quantum number explains about the possible energy levels of the sub-shells. They are called “orbitals”.
Spin quantum number represents the spin of the electron that occupy in the orbital.
According to Aufbau’s principle, electrons are occupied from the lowest energy level to highest energy level.
According to Hund’s rule, electrons are singly occupied in all the orbitals of the sub-shells and all those electrons have parallel spin. After the electrons are singly occupied, electrons further occupy the singly filled orbitals with opposite spin. This relates to Pauli’s exclusion principle which states an orbital can have only two electrons which must have opposite spins with respect to each other.
Each orbital can accommodate two electrons of opposite spins. The first shell has one s-orbital and 2 electrons are occupied in it. The second shell has 2 sub-shells – s and p. Six electrons are occupied in the 3 p-orbitals as two electrons per p-orbital. Further the p-subshell also has an s-orbital and 2 electrons can be occupied there. Totally 8 electrons can occupy the second shell.
Conclusion:
The number of electrons that can occupy first shell and second shell have been determined
Want to see more full solutions like this?
Chapter 15 Solutions
EBK CONCEPTUAL PHYSICAL SCIENCE
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Chemistry: Structure and Properties (2nd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Microbiology with Diseases by Body System (5th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- No chatgpt pls will upvotearrow_forwardYou are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forward
- A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forwardWhat are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forward
- A circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forward
- Describe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





