Concept explainers
(a)
To write: An expression for a double Riemann sum of the given function.
(a)

Explanation of Solution
Given:
The continuous function
The double integral of f over the rectangle R is,
Here,
The given continuous function is
The sample points of each rectangle is denoted by
The image value of the sample points under the function
The Riemann sum constants are denoted by m, n.
The sum mentioned above
(b)
To write: The definition of
(b)

Explanation of Solution
The double integral can be expressed in terms of double Riemann sum as follows:
The double integral of f over the rectangle R is,
Here,
The given continuous function is
The sample points of each rectangle is denoted by
The image value of the sample points under the function
The Riemann sum constants are denoted by m, n.
(c)
To write: The geometric interpretation of
(c)

Explanation of Solution
When
If suppose the given function f takes both positive and negative values, then it does not denote the volume exactly. But, it is taken that the volume of the function of the two graphs one above the xy-plane and one below the xy-plane.
(d)
To evaluate: The value of the double integral
(d)

Explanation of Solution
Rewrite the indefinite double integral by definite double integral from the equations or inequalities in the given rectangle. Then, as per the rules of
(e)
To interpret: About the Midpoint Rule for double integrals.
(e)

Explanation of Solution
The double integral,
Here,
The given function is
The mid points of each rectangle is denoted by
The Riemann sum constants are denoted by m, n.
Separate the given region by small rectangles by the method of Riemann sum for the double integrals. Then, pick the sample points from the Midpoint of each rectangle.
(f)
To write: The expression for the average value of f.
(f)

Explanation of Solution
The area of the given rectangle R is denoted by
Then,
Want to see more full solutions like this?
Chapter 15 Solutions
WEBASSIGN: CALCULUS: EARLY TRANSCENDENT
- Suppose that f(x, y, z) = (x − 2)² + (y – 2)² + (z − 2)² with 0 < x, y, z and x+y+z≤ 10. 1. The critical point of f(x, y, z) is at (a, b, c). Then a = b = C = 2. Absolute minimum of f(x, y, z) is and the absolute maximum isarrow_forwardThe spread of an infectious disease is often modeled using the following autonomous differential equation: dI - - BI(N − I) − MI, dt where I is the number of infected people, N is the total size of the population being modeled, ẞ is a constant determining the rate of transmission, and μ is the rate at which people recover from infection. Close a) (5 points) Suppose ẞ = 0.01, N = 1000, and µ = 2. Find all equilibria. b) (5 points) For the equilbria in part a), determine whether each is stable or unstable. c) (3 points) Suppose ƒ(I) = d. Draw a phase plot of f against I. (You can use Wolfram Alpha or Desmos to plot the function, or draw the dt function by hand.) Identify the equilibria as stable or unstable in the graph. d) (2 points) Explain the biological meaning of these equilibria being stable or unstable.arrow_forwardFind the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forward
- Find the indefinite integral. Check Answer: In(5x) dx xarrow_forwardFind the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forwardHere is a region R in Quadrant I. y 2.0 T 1.5 1.0 0.5 0.0 + 55 0.0 0.5 1.0 1.5 2.0 X It is bounded by y = x¹/3, y = 1, and x = 0. We want to evaluate this double integral. ONLY ONE order of integration will work. Good luck! The dA =???arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning



