![Materials Science and Engineering: An Introduction, 10e WileyPLUS + Abridged Loose-leaf](https://www.bartleby.com/isbn_cover_images/9781119472070/9781119472070_smallCoverImage.jpg)
The elastic modulus and tensile strength of the poly (methyl methacrylate) from the stress strain data given in Figure 15.3 at room temperature
![Check Mark](/static/check-mark.png)
Answer to Problem 1QAP
The calculated elastic modulus of the poly (methyl methacrylate) is slightly greater than the maximum value of elastic modulus given in the Table 15.2 that is
The tensile strength (stress) found from the Figure 15.3 (
Explanation of Solution
Write the relation between elastic modulus, tensile strength and strain.
Here,
Conclusion:
Refer to Figure 15.3. “The influence of temperature on the stress strain characteristics of poly (methyl methacrylate)”.
The stress and strain corresponding to the temperature curve of
From Figure 1.
Let, the initial stress and strain corresponding to the temperature curve of
Let, the final stress and strain corresponding to the temperature curve of
Calculate the elastic modulus.
Substitute
Thus, the elastic modulus of poly (methyl methacrylate) is
Refer to Table 15.2, “Room-Temperature
The elastic modulus corresponding to poly (methyl methacrylate) is
Hence, the calculated elastic modulus of the poly (methyl methacrylate) is slightly greater than the maximum value of elastic modulus given in the Table 15.2 that is
From Figure 1.
The tensile strength (stress) at the end of the curve corresponding to the temperature curve of
Refer to Table 15.2, “Room-Temperature mechanical characteristics of some of the more common polymers”.
The tensile strength (stress) corresponding to poly (methyl methacrylate) is
Hence, the tensile strength (stress) found from the Figure 15.3 (
Want to see more full solutions like this?
Chapter 15 Solutions
Materials Science and Engineering: An Introduction, 10e WileyPLUS + Abridged Loose-leaf
- A simply supported rectangular RC beam is to carry a uniform factored dead load of 1.2 kip/ftand a concentrated factored live load of 16 kip at mid-span. The beam self-weight is not includedin these loads. The concrete weighs 135 pcf. The span length is 25 ft. Please find the smallestsection allowed by ACI and design accordingly. Use f c’ = 5,000 psi, f y = 75,000 psi. Theexposure is interior with no weather exposure.a. Assume an arbitrary self-weight/ft of the beam.b. Find the maximum factored bending moment in the beam.c. Set up the moment equation and solve for the beam section.d. Revise the assumption if needed.Hint: The beam section (b and h) and steel reinforcement are inversely proportional. The smallestallowable beam section will be for the largest allowable steel ration (ρmax), and vice versa. Sincethe steel ratio is fixed, two remaining variables (b, d) need to be found from the moment equations.Then, bd2 term can be solved to get an acceptable b and d combination.arrow_forwardA piston–cylinder device contains 50 kg of water at 250 kPa and 25°C. The cross-sectional area of the piston is 0.1 m2. Heat is now transferred to the water, causing part of it to evaporate and expand. When the volume reaches 0.26 m3, the piston reaches a linear spring whose spring constant is 100 kN/m. More heat is transferred to the water until the piston rises 20 cm more. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the work done during this process. The work done during this process is kJ.arrow_forwardA 4-m × 5-m × 7-m room is heated by the radiator of a steam-heating system. The steam radiator transfers heat at a rate of 10,000 kJ/h, and a 100-W fan is used to distribute the warm air in the room. The rate of heat loss from the room is estimated to be about 5000 kJ/h. If the initial temperature of the room air is 10°C, determine how long it will take for the air temperature to rise to 25°C. Assume constant specific heats at room temperature. The gas constant of air is R = 0.287 kPa·m3/kg·K (Table A-1). Also, cv = 0.718 kJ/kg·K for air at room temperature (Table A-2). Steam enters the radiator system through an inlet outside the room and leaves the system through an outlet on the same side of the room. The fan is labeled as W sub p w. The heat is given off by the whole system consisting of room, radiator and fan at the rate of 5000 kilojoules per hour. It will take 831 Numeric ResponseEdit Unavailable. 831 incorrect.s for the air temperature to rise to 25°C.arrow_forward
- Find: ftop and fbottom of (initial stage, construction phase, final stage)arrow_forwardReport 16.1 A grocery store manager wants to analyze customer spending data by product categories: fresh baked goods, meat and dairy, produce, and frozen food. Fresh 1 baked goods: 30% of shoppers purchase these items, spending follows a uniform distribution between $3 and $19. Meat and dairy: 70% of shoppers purchase these items, spending is normally distributed with a mean of $21 and a standard deviation of $5.27. Produce: 80% of shoppers spend an average of $15 on produce, spending follows a normal distribution with a standard deviation of $2.31. Frozen food: 65% of shoppers purchase these items, spending follows a uniform distribution between $7.25 and $28.50. On average, approximately 220 customers visit the store each day. The task is to develop a Monte Carlo simulation and risk analysis model to analyze customer spending and the fluctuation in daily revenue.arrow_forward+150+ Assignment SW+ SLAB SDL = 250 150 - 3.3 kPa укра LL = 3 kPa 3 ୪ 8c = 23.6 kN/m² P = 3000 KN loss, = 9% Coss = 20% LBEAM = 9m COMPUTE AND DRAW THE STESS DIAGRAM (TRIBUTARY WIDTH= 600m 350mm FIND: f TOP & BOTTOM fe = 35Mpa 100mm f'c = 42.5 MPa 218 5m) EC = 4700 √ fc (MPa) (Initial, Const. phase, final stage)arrow_forward
- A piston–cylinder device contains 50 kg of water at 250 kPa and 25°C. The cross-sectional area of the piston is 0.1 m2. Heat is now transferred to the water, causing part of it to evaporate and expand. When the volume reaches 0.26 m3, the piston reaches a linear spring whose spring constant is 100 kN/m. More heat is transferred to the water until the piston rises 20 cm more. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the final pressure and temperature. The final pressure is kPa. The final temperature is ºC. Find the work done during the processarrow_forwardA garden hose attached with a nozzle is used to fill a 20-gal bucket. The inner diameter of the hose is 1 in and it reduces to 0.53 in at the nozzle exit. The average velocity in the hose is 8 ft/s and the density of water is 62.4 lbm/ft3. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the volume and mass flow rates of water through the hose. The volume flow rate of water through the hose is ft3/s. The mass flow rate of water through the hose is lbm/s. The change in time? What is the exit velocity?arrow_forwardA 23-ft3 rigid tank initially contains saturated refrigerant-134a vapor at 160 psia. As a result of heat transfer from the refrigerant, the pressure drops to 50 psia. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the final temperature. Use data from refrigerant tables. The final temperature is ºF.arrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337385497/9781337385497_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133691808/9781133691808_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073376356/9780073376356_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134589657/9780134589657_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781119175483/9781119175483_smallCoverImage.gif)