
Concept explainers
(a)
Using the MATLAB Help menu discuss how the function ABS(X) used.
(a)

Explanation of Solution
In MATLAB, go to Help, it shows the documentation, examples, wed support, and academy symbols. Open the documentation then search for the specific functions, it will provides the syntax function then click on it, will shows the information about each of the function.
Search for the function ABS(X), the function ABS(X) is used to display the absolute value of the real values and complex values.
Example 1:
In the MATLAB command window type the code as follows,
X=-5;
abs(X)
The output will be displayed as follows,
ans =
5
Example 2:
In the MATLAB command window type the code as follows,
X=-5+6*i;
abs(X)
The output will be displayed as follows,
ans =
7.8102
Conclusion:
Thus, the function ABS(X) has been explained.
(b)
Using the MATLAB Help menu discuss how the function TIC, TOC used.
(b)

Explanation of Solution
Now Search for the command, it is TIC is used to start a stopwatch timer and the command TOC is used to print the number of seconds required for the operation. Both are used to find the program elapsed time.
Example:
In the MATLAB command window write the code as follows,
tic
P = rand(1000,300);
Q = rand(1000,300);
toc
C = P'.*Q';
toc
Its output displays as below, but it is changes every time as the execution time elapsed different time length for each execution,
Elapsed time is 0.049194 seconds.
Elapsed time is 0.067125 seconds.
Conclusion:
Thus, the function TIC, TOC has been explained.
(c)
Using the MATLAB Help menu discuss how the function SIZE(x) used.
(c)

Explanation of Solution
Now search for the SIZE (x), it is the two
Example:
Consider the matrix as follows:
In the MATLAB command window write the code as follows,
x=[1 2 3;4 5 6;7 8 9];
D=size(x)
The output will be displayed as follows,
D =
3 3
Conclusion:
Thus, the function SIZE(x) has been explained.
(d)
Using the MATLAB Help menu discuss how the function FIX(x) used.
(d)

Explanation of Solution
Now search for the command FIX(x) in Help tab, it is used to round the element of x to the nearest integer towards zero.
Example:
In the MATLAB command window write the code as follows,
x=3.48;
fix(x)
The output will be displayed as follows:
ans =
3
Conclusion:
Thus, the function FIX(x) has been explained.
(e)
Using the MATLAB Help menu discuss how the function FLOOR(x) used.
(e)

Explanation of Solution
The command FLOOR(x) is used to round the element of x to the nearest integer towards negative infinity.
Example:
In the MATLAB command window write the code as follows,
x=-3.67;
floor(x)
The output will be displayed as follows,
ans =
-4
Conclusion:
Thus, the function FLOOR(x) has been explained.
(f)
Using the MATLAB Help menu discuss how the function CEIL(x) used.
(f)

Explanation of Solution
In MATLAB Help tab search the function, the command CEIL(x) is used to round the element of x to the nearest integer towards infinity.
Example:
In the MATLAB command window write the code as follows,
x=3.67;
ceil(x)
The output will be displayed as follows,
ans =
4
Conclusion:
Thus, the function CEIL(x) has been explained.
(g)
Using the MATLAB Help menu discuss how the function CALENDAR used.
(g)

Explanation of Solution
The CALENDAR function is a
Example 1:
In the MATLAB command window write the code as follows,
calendar (1989,10)
The output will be displayed as follows,
Oct 1989
S M Tu W Th F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 0 0 0 0
0 0 0 0 0 0 0
Example 2:
In the MATLAB command window write the code as follows,
calendar (8,10)
The output will be displayed as follows,
Oct 0008
S M Tu W Th F S
0 0 0 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 0
0 0 0 0 0 0 0
Conclusion:
Thus, the function CALENDAR has been explained.
Want to see more full solutions like this?
Chapter 15 Solutions
LMS Integrated for MindTap Engineering, 2 terms (12 months) Printed Access Card for Moavni's Engineering Fundamentals: An Introduction to Engineering, 5th
- REINFORCED CONCRETE DESIGNFLEXURAL ANALYSIS OF BEAMS (CRACKED SECTION)Solution must be completeUse ballpen/inkpenAnswer in two decimal placesBox your final answerarrow_forwardA vertical parabolic curve has a back tangent of -5% and a forward tangent of +3% intersecting at station 1 + 240 at an elevation of 100m. If the stationing of PC is at 1 + 120, Evaluate the elevation at the third quarter point.arrow_forwardREINFORCED CONCRETE DESIGNFLEXURAL ANALYSIS OF BEAMS (CRACKED SECTION)Solution must be completeUse ballpen/inkpenAnswer in two decimal placesBox your final answerarrow_forward
- What is the volume of the earth's mantle in cubic kilometers? (tute problem 4d) Note: enter the number without units. For large (or small) numbers, use E notation, e.g. three million is equivalent to 3*10^6 which is 3E6 in E notation.arrow_forwardH.W: From an in-out survey conducted for a parking area consisting of 40 bays, the initial count was found to be 20 vehicles. Table gives the result of the survey. The number of vehicles coming in and out of the parking lot for a time interval of 5 minutes is as shown in the table below. Find the accumulation, total parking load, average occupancy and efficiency of the parking lot. Table: In-out survey data Time (minutes) In Out 5 3 2 10 6 2 15 3 1 20 6 7 25 6 4 30 8 6arrow_forwardcan you show me step for step? Autocad has me irritated.arrow_forward
- mummins) Is there any risk from a contaminant if 150 out of 3800 people exposed to the groundwater contaminant develop cancer and 125 out of 5000 people not exposed to the contamination also develop cancer? Why or why not? Use at least two methods to support your answer.arrow_forwardA spare buoy is a buoyant rod weighted to float and protrude vertically, as shown in thefigure below. Suppose that the buoy is made of maple wood ( specific gravity s = 0.6), has arectangular cross section ( 2.54cm by 2.54cm ), a length of 3.7 m , and is floating in seawater( specific gravity s =1.025 ). What weight of steel should be added to the bottom end of thebuoy so that h=0.45 cm? ( The specific gravity of steel s = 7.85 )arrow_forward8-42. Determine the displacement at point D. Use the principle of virtual work. El is constant. 60 kN 2m- 2 m B 30 kN/m 3 marrow_forward
- Two monitoring wells are spaced 500 m apart along the direction of groundwater flow in a confined aquifer 30.0 m thick. The difference in water level in the wells is 2.5 m. The hydraulic conductivity is 40 m/d. a) Sketch the aquifer and wells and label distances and direction of groundwater flow. b) If the real velocity of the groundwater is 0.6 m/d, what is the porosity? c) If it takes 10 years for a petroleum hydrocarbon plume to appear in the second well, what was the retardation factor?arrow_forward9. 0000) Water in a lake contains 10.5 ppb of vinyl chloride, which has a potency factor of 2.3 (mg/kg-d) 1 a. What is the incremental cancer risk for children (average weight of 15 kg) who may ingest 0.05 L of water per day while playing in the water every summer (for approximately 60 days) for 10 years? b. Is this risk acceptable? Why or why not?arrow_forward8-37. Determine the displacement of point C. Use the method of virtual work. El is constant. -12 ft- 3 k/ft -12 ft- Barrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Architectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage Learning



