Concept explainers
(a)
Using the MATLAB Help menu discuss how the function ABS(X) used.
(a)

Explanation of Solution
In MATLAB, go to Help, it shows the documentation, examples, wed support, and academy symbols. Open the documentation then search for the specific functions, it will provides the syntax function then click on it, will shows the information about each of the function.
Search for the function ABS(X), the function ABS(X) is used to display the absolute value of the real values and complex values.
Example 1:
In the MATLAB command window type the code as follows,
X=-5;
abs(X)
The output will be displayed as follows,
ans =
5
Example 2:
In the MATLAB command window type the code as follows,
X=-5+6*i;
abs(X)
The output will be displayed as follows,
ans =
7.8102
Conclusion:
Thus, the function ABS(X) has been explained.
(b)
Using the MATLAB Help menu discuss how the function TIC, TOC used.
(b)

Explanation of Solution
Now Search for the command, it is TIC is used to start a stopwatch timer and the command TOC is used to print the number of seconds required for the operation. Both are used to find the program elapsed time.
Example:
In the MATLAB command window write the code as follows,
tic
P = rand(1000,300);
Q = rand(1000,300);
toc
C = P'.*Q';
toc
Its output displays as below, but it is changes every time as the execution time elapsed different time length for each execution,
Elapsed time is 0.049194 seconds.
Elapsed time is 0.067125 seconds.
Conclusion:
Thus, the function TIC, TOC has been explained.
(c)
Using the MATLAB Help menu discuss how the function SIZE(x) used.
(c)

Explanation of Solution
Now search for the SIZE (x), it is the two
Example:
Consider the matrix as follows:
In the MATLAB command window write the code as follows,
x=[1 2 3;4 5 6;7 8 9];
D=size(x)
The output will be displayed as follows,
D =
3 3
Conclusion:
Thus, the function SIZE(x) has been explained.
(d)
Using the MATLAB Help menu discuss how the function FIX(x) used.
(d)

Explanation of Solution
Now search for the command FIX(x) in Help tab, it is used to round the element of x to the nearest integer towards zero.
Example:
In the MATLAB command window write the code as follows,
x=3.48;
fix(x)
The output will be displayed as follows:
ans =
3
Conclusion:
Thus, the function FIX(x) has been explained.
(e)
Using the MATLAB Help menu discuss how the function FLOOR(x) used.
(e)

Explanation of Solution
The command FLOOR(x) is used to round the element of x to the nearest integer towards negative infinity.
Example:
In the MATLAB command window write the code as follows,
x=-3.67;
floor(x)
The output will be displayed as follows,
ans =
-4
Conclusion:
Thus, the function FLOOR(x) has been explained.
(f)
Using the MATLAB Help menu discuss how the function CEIL(x) used.
(f)

Explanation of Solution
In MATLAB Help tab search the function, the command CEIL(x) is used to round the element of x to the nearest integer towards infinity.
Example:
In the MATLAB command window write the code as follows,
x=3.67;
ceil(x)
The output will be displayed as follows,
ans =
4
Conclusion:
Thus, the function CEIL(x) has been explained.
(g)
Using the MATLAB Help menu discuss how the function CALENDAR used.
(g)

Explanation of Solution
The CALENDAR function is a
Example 1:
In the MATLAB command window write the code as follows,
calendar (1989,10)
The output will be displayed as follows,
Oct 1989
S M Tu W Th F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 0 0 0 0
0 0 0 0 0 0 0
Example 2:
In the MATLAB command window write the code as follows,
calendar (8,10)
The output will be displayed as follows,
Oct 0008
S M Tu W Th F S
0 0 0 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 0
0 0 0 0 0 0 0
Conclusion:
Thus, the function CALENDAR has been explained.
Want to see more full solutions like this?
Chapter 15 Solutions
EBK ENGINEERING FUNDAMENTALS: AN INTROD
- Calculate ALL nodal displacements and ALL the member forces in the truss. Please use the ID's noted in the truss diagramarrow_forwardQ3. In a water flood operation in reservoir A, water is being distributed to severalinjection wells from a common injection system; that is, water is supplied to all thewells at approximately the same well head pressure. Routine measurement of theindividual well injection rates by the team of field operators showed that one well wasreceiving approximately 45% more than its neighbours. The sum of the kh productsfor all of the injection wells were approximately the same depth. As a member of theteam, explain:What are the possible causes of the abnormally high injection rate in this well, andwhat production logs or other tests might be run to further diagnose the problem andplan remedial action?arrow_forwardQuestion 1 20 pts Test data on the bending strength of construction wood poles of various diameter are presented below assuming the same length. Kip- 1000 lbf. Using the following data with 2nd order Newton polynomial interpolation, we want to determine the strength of the material for x=4.5 in. Which data point will be used as x? After you found x0, enter the value of x-xo in the solution. Answer shall be in one decimal place. Distance (in) 2.6 1.5 8.3 2.8 5.7 Strength (kips) 100 200 300 400 500arrow_forward
- Solve pleasearrow_forwardsolve all of the last names from A-K to please for example use k=100k/in , m =1000lb/g . use el centro (2nd picture ) to solve the questions. Thank you for your help! for the following questions ignore that last name and just solve it pleae: Verify the modes that are orthogonal Normalize the first mode uisng electro with 2%damping, Determine Sa&Sd only for the first modearrow_forwardFor question 2 do 2% please. Use El centro spectrum to answer the secon question please. Thank you for your help!arrow_forward
- solve pleasearrow_forwardA mechanism for pushing small boxes from an assembly line onto a conveyor belt is shown with arm OD and crank CB in their vertical positions. For the configuration shown, crank CB has a constant clockwise angular velocity of 0.6π rad/s. Determine the acceleration QE of E (positive if to the right, negative if down). 450 mm 215 mm 565 mm A 185 mm 105 mm 110185. mm mm Answer: a = i B 40 mm E m/s²arrow_forwardPlease answer the following questions in the picture, use the second picture to answer some of the questions. I appreciate your help! Explain step by step, thank you!arrow_forward
- Question 5. Three pipes A, B, and C are interconnected as in Fig. 2. The pipe characteristics are given below. Find the rate at which water will flow in each pipe. Find also the pressure at point P. (Neglect minor losses) Pipe D (in) L (ft) f A 6 2000 0.020 B 4 1600 0.032 C 8 3000 0.02 -El. 200 ft P -El. 120 ft B Fig. 2 -El. 50 ft.arrow_forwardcalculate all nodal displacementts and all the member forces of the trussarrow_forwardNOTE: Use areal methods only for V,M,N diagrams(Do NOT use the equations) (also draw the N diagram(s) for the entire structure)arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Architectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage Learning



