
Topology
2nd Edition
ISBN: 9780134689517
Author: Munkres, James R.
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1.5, Problem 1E
Show there is a bijective correspondence of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
part 3 of the question is:
A power outage occurs 6 min after the ride started. Passengers must wait for their cage to be manually cranked into the lowest position in order to exit the ride. Sine function model: where h is the height of the last passenger above the ground measured in feet and t is the time of operation of the ride in minutes.
What is the height of the last passenger at the moment of the power outage? Verify your answer by evaluating the sine function model.
Will the last passenger to board the ride need to wait in order to exit the ride? Explain.
2. The duration of the ride is 15 min.
(a) How many times does the last passenger who boarded the ride make a complete loop on the Ferris
wheel?
(b) What is the position of that passenger when the ride ends?
3. A scientist recorded the movement of a pendulum for 10 s. The scientist began recording when the pendulum
was at its resting position. The pendulum then moved right (positive displacement) and left (negative
displacement) several times. The pendulum took 4 s to swing to the right and the left and then return to its
resting position. The pendulum's furthest distance to either side was 6 in. Graph the function that represents
the pendulum's displacement as a function of time.
Answer:
f(t)
(a) Write an equation to represent the displacement of the pendulum as a function of time.
(b) Graph the function.
10
9
8
7
6
5
4
3
2
1
0
t
1
2
3
4
5
6
7
8
9 10
11
12
13 14
15
-1
-5.
-6
-7
-8
-9
-10-
Chapter 1 Solutions
Topology
Ch. 1.1 - Check the distributive laws for and and De Morgans...Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Determine which of the following statements are...
Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Prob. 2.11ECh. 1.1 - Determine which of the following statements are...Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Determine which of the following statements are...Ch. 1.1 - Write the contrapositive and converse of the...Ch. 1.1 - Do the same for the statement If x0, then x2x0.Ch. 1.1 - Let A and B be sets of real numbers. Write the...Ch. 1.1 - Let A and B be sets of real numbers. Write the...Ch. 1.1 - Let A and B be sets of real numbers. Write the...Ch. 1.1 - Let A and B be sets of real numbers. Write the...Ch. 1.1 - Let A be a nonempty collection of sets. Determine...Ch. 1.1 - Write the contrapositive of each of the statements...Ch. 1.1 - Write the contrapositive of each of the statements...Ch. 1.1 - Write the contrapositive of each of the statements...Ch. 1.1 - Write the contrapositive of each of the statements...Ch. 1.1 - Prob. 7ECh. 1.1 - Prob. 8ECh. 1.1 - Formulate and prove DeMorgans laws for arbitrary...Ch. 1.1 - Let denote the set of real numbers. For each of...Ch. 1.1 - Let denote the set of real numbers. For each of...Ch. 1.1 - Let denote the set of real numbers. For each of...Ch. 1.1 - Let denote the set of real numbers. For each of...Ch. 1.1 - Let denote the set of real numbers. For each of...Ch. 1.2 - Let f:AB. Let A0AandB0B. Show that A0f1(f(A0)) and...Ch. 1.2 - Prob. 1.2ECh. 1.2 - Let f:AB and let AiAandBiBfori=0andi=1. Show that...Ch. 1.2 - Let f:AB and let AiAandBiBfori=0andi=1. Show that...Ch. 1.2 - Let f:AB and let AiAandBiBfori=0andi=1. Show that...Ch. 1.2 - Let f:AB and let AiAandBiBfori=0andi=1. Show that...Ch. 1.2 - Prob. 2.5ECh. 1.2 - Let f:AB and let AiAandBiBfori=0andi=1. Show that...Ch. 1.2 - Let f:AB and let AiAandBiBfori=0andi=1. Show that...Ch. 1.2 - Let f:AB and let AiAandBiBfori=0andi=1. Show that...Ch. 1.2 - Show that b, c, f, and g of Exercise 2 hold for...Ch. 1.2 - Show that b, c, f, and g of Exercise 2 hold for...Ch. 1.2 - Show that b, c, f, and g of Exercise 2 hold for...Ch. 1.2 - Show that b, c, f, and g of Exercise 2 hold for...Ch. 1.2 - Let f:AB and g:BC. If C0C, show that...Ch. 1.2 - Let f:AB and g:BC. If f and g are injective, show...Ch. 1.2 - Let f:AB and g:BC. If gf is injective, what can...Ch. 1.2 - Let f:AB and g:BC. If f and g are surjective, show...Ch. 1.2 - Let f:AB and g:BC. If gf is surjective, what can...Ch. 1.2 - Let f:AB and g:BC. Summarize your answers to b-e...Ch. 1.2 - In general, let us denote the identity function...Ch. 1.2 - In general, let us denote the identity function...Ch. 1.2 - In general, let us denote the identity function...Ch. 1.2 - In general, let us denote the identity function...Ch. 1.2 - In general, let us denote the identity function...Ch. 1.2 - Let f: be the function f(x)=x3x. By restricting...Ch. 1.3 - Define two points (x0,y0) and (x1,y1) of the plane...Ch. 1.3 - Let C be a relation on a set A. If A0A, define the...Ch. 1.3 - Here is a proof that every relation C that is both...Ch. 1.3 - Let f:AB be a surjective function. Let us define a...Ch. 1.3 - Let f:AB be a surjective function. Let us define a...Ch. 1.3 - Let S and S be the following subsets of the plane:...Ch. 1.3 - Let S and S be the following subsets of the plane:...Ch. 1.3 - Let S and S be the following subsets of the plane:...Ch. 1.3 - Define a relation on the plane by setting...Ch. 1.3 - Show that the restriction of an order relation is...Ch. 1.3 - Check that the relation defined in Example 7 is an...Ch. 1.3 - Check that the dictionary order is an order...Ch. 1.3 - a Show that the map f:(1,1) of Example 9 is order...Ch. 1.3 - Prob. 10.2ECh. 1.3 - Prob. 11ECh. 1.3 - Prob. 12ECh. 1.3 - Prove the following: Theorem. If an ordered set A...Ch. 1.3 - If C is a relation on a set A, define a new...Ch. 1.3 - Assume that the real line has the least upper...Ch. 1.4 - Prove the following laws of algebra for , using...Ch. 1.4 - Prove the following laws of algebra for , using...Ch. 1.4 - Prob. 1.3ECh. 1.4 - Prob. 1.4ECh. 1.4 - Prob. 1.5ECh. 1.4 - Prob. 1.6ECh. 1.4 - Prove the following laws of algebra for , using...Ch. 1.4 - Prove the following laws of algebra for , using...Ch. 1.4 - Prob. 1.9ECh. 1.4 - Prob. 1.10ECh. 1.4 - Prob. 1.11ECh. 1.4 - Prob. 1.12ECh. 1.4 - Prob. 1.13ECh. 1.4 - Prob. 1.14ECh. 1.4 - Prob. 1.15ECh. 1.4 - Prob. 1.16ECh. 1.4 - Prove the following laws of algebra for , using...Ch. 1.4 - Prob. 1.18ECh. 1.4 - Prob. 1.19ECh. 1.4 - Prob. 1.20ECh. 1.4 - Prob. 2.1ECh. 1.4 - Prob. 2.2ECh. 1.4 - Prob. 2.3ECh. 1.4 - Prob. 2.4ECh. 1.4 - Prob. 2.5ECh. 1.4 - Prob. 2.6ECh. 1.4 - Prob. 2.7ECh. 1.4 - Prob. 2.8ECh. 1.4 - Prob. 2.9ECh. 1.4 - Prob. 2.10ECh. 1.4 - Prob. 2.11ECh. 1.4 - Prob. 3ECh. 1.4 - Prob. 4.1ECh. 1.4 - Prob. 4.2ECh. 1.4 - Prove the following properties of and+: a...Ch. 1.4 - Prob. 6ECh. 1.4 - Prob. 7ECh. 1.4 - Prob. 8.1ECh. 1.4 - Prob. 8.2ECh. 1.4 - Prob. 8.3ECh. 1.4 - a Show that every nonempty subset of that is...Ch. 1.4 - Prob. 10.1ECh. 1.4 - Prob. 10.2ECh. 1.4 - Prob. 10.3ECh. 1.4 - Prob. 10.4ECh. 1.4 - Prob. 11.1ECh. 1.4 - Prob. 11.2ECh. 1.4 - Prob. 11.3ECh. 1.4 - Prob. 11.4ECh. 1.5 - Show there is a bijective correspondence of AB...Ch. 1.5 - a Show that if n1 there is bijective...Ch. 1.5 - b Given the indexed family {A1,A2,}, let...Ch. 1.5 - Let A=A1A2 and B=B1B2. a Show that if BiAi for all...Ch. 1.5 - Let A=A1A2 and B=B1B2. b Show the converse of a...Ch. 1.5 - Let A=A1A2 and B=B1B2. c Show that if A is...Ch. 1.5 - Prob. 3.4ECh. 1.5 - Let m,n+. Let X. a If mn, find an injective map...Ch. 1.5 - Let m,n+. Let X. b Find a bijective map...Ch. 1.5 - Let m,n+. Let X. c Find an injective map h:XnX.Ch. 1.5 - Let m,n+. Let X. d Find a bijective map k:XnXX.Ch. 1.5 - Prob. 4.5ECh. 1.5 - Prob. 4.6ECh. 1.5 - Which of the following subsets of can be...Ch. 1.6 - a Make a list of all the injective maps...Ch. 1.6 - Prob. 2ECh. 1.6 - Prob. 3ECh. 1.6 - Prob. 4.1ECh. 1.6 - Prob. 4.2ECh. 1.6 - If AB is finite, does it follow that A and B are...Ch. 1.6 - a Let A={1,,n}. Show there is a bijection of P(A)...Ch. 1.6 - b Show that if A is finite, then P(A) is finite.Ch. 1.6 - Prob. 7ECh. 1.7 - Show that is countably infinite.Ch. 1.7 - Show that the maps f and g of Examples 1 and 2 are...Ch. 1.7 - Prob. 3ECh. 1.7 - a A real number x is said to be algebraic over the...Ch. 1.7 - Determine, for each of the following sets, whether...Ch. 1.7 - Determine, for each of the following sets, whether...Ch. 1.7 - Determine, for each of the following sets, whether...Ch. 1.7 - Determine, for each of the following sets, whether...Ch. 1.7 - Determine, for each of the following sets, whether...Ch. 1.7 - Determine, for each of the following sets, whether...Ch. 1.7 - Determine, for each of the following sets, whether...Ch. 1.7 - Determine, for each of the following sets, whether...Ch. 1.7 - Prob. 5.9ECh. 1.7 - Prob. 5.10ECh. 1.7 - We say that two sets A and B have the same...Ch. 1.7 - We say that two sets A and B have the same...Ch. 1.7 - Show that the sets D and E of Exercise 5 have the...Ch. 1.7 - Let X denote the two-element set {0,1}; let B be...Ch. 1.7 - a The formula...Ch. 1.8 - Prob. 1ECh. 1.8 - Prob. 2ECh. 1.8 - Prob. 3ECh. 1.8 - Prob. 4ECh. 1.8 - Prob. 5ECh. 1.8 - Prob. 6ECh. 1.8 - Prob. 7ECh. 1.8 - Prob. 8ECh. 1.9 - Define an injective map f:+X, where X is the...Ch. 1.9 - Prob. 2ECh. 1.9 - Prob. 3ECh. 1.9 - There was a theorem in 7 whose proof involved an...Ch. 1.9 - a Use the choice axiom to show that if f:AB is...Ch. 1.9 - Let A and B be two nonempty sets. If there is an...Ch. 1.9 - Prob. 8ECh. 1.10 - Prob. 1ECh. 1.10 - Both {1,2}+ and +{1,2} are well-ordered in the...Ch. 1.10 - a Let denote the set of negative integers in the...Ch. 1.10 - Show the well-ordering theorem implies the choice...Ch. 1.10 - Prob. 6ECh. 1.10 - a Let A1 and A2 be disjoint sets, well-ordered by...Ch. 1.10 - Let A and B be two sets. Using the well-ordering...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- A power outage occurs 6 min after the ride started. Passengers must wait for their cage to be manually cranked into the lowest position in order to exit the ride. Sine function model: h = −82.5 cos (3πt) + 97.5 where h is the height of the last passenger above the ground measured in feet and t is the time of operation of the ride in minutes. (a) What is the height of the last passenger at the moment of the power outage? Verify your answer by evaluating the sine function model. (b) Will the last passenger to board the ride need to wait in order to exit the ride? Explain.arrow_forwardThe Colossus Ferris wheel debuted at the 1984 New Orleans World's Fair. The ride is 180 ft tall, and passengers board the ride at an initial height of 15 ft above the ground. The height above ground, h, of a passenger on the ride is a periodic function of time, t. The graph displays the height above ground of the last passenger to board over the course of the 15 min ride. Height of Passenger in Ferris Wheel 180 160 140- €120 Height, h (ft) 100 80 60 40 20 0 ך 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time of operation, t (min) Sine function model: h = −82.5 cos (3πt) + 97.5 where h is the height of the passenger above the ground measured in feet and t is the time of operation of the ride in minutes. What is the period of the sine function model? Interpret the period you found in the context of the operation of the Ferris wheel. Answer:arrow_forward1. Graph the function f(x)=sin(x) −2¸ Answer: y -2π 一元 1 −1 -2 -3 -4+ 元 2πarrow_forward
- 3. Graph the function f(x) = −(x-2)²+4 Answer: f(x) 6 5 4 3 2+ 1 -6-5 -4-3-2-1 × 1 2 3 4 5 6 -1 -2+ ရာ -3+ -4+ -5 -6arrow_forward2. Graph the function f(x) = cos(2x)+1 Answer: -2π 一元 y 3 2- 1 -1 -2+ ရာ -3- Π 2πarrow_forward2. Graph the function f(x) = |x+1+2 Answer: -6-5-4-3-2-1 f(x) 6 5 4 3 2 1 1 2 3 4 5 6 -1 -2 -3 -4 -5 -6arrow_forward
- 1. The table shows values of a function f(x). What is the average rate of change of f(x) over the interval from x = 5 to x = 9? Show your work. X 4 f(x) LO 5 6 7 8 9 10 -2 8 10 11 14 18arrow_forward• Find a real-world situation that can be represented by a sinusoidal function. You may find something online that represents a sinusoidal graph or you can create a sinusoidal graph yourself with a measuring tape and a rope. • Provide a graph complete with labels and units for the x- and y-axes. • Describe the amplitude, period, and vertical shift in terms of the real-world situation.arrow_forwardf(x) = 4x²+6x 2. Given g(x) = 2x² +13x+15 and find 41 (4)(x) Show your work.arrow_forward
- f(x) = x² − 6x + 8 3. Given and g(x) = x -2 solve f(x) = g(x) using a table of values. Show your work.arrow_forward1. Graph the function f(x) = 3√x-2 Answer: -6-5 -4-3-2 -1 6 LO 5 f(x) 4 3 2+ 1 1 2 3 4 5 6 -1 -2+ -3 -4 -5 -6- 56arrow_forwardA minivan is purchased for $29,248. The value of the vehicle depreciates over time. • Describe the advantages and disadvantages of using a linear function to represent the depreciation of the car over time. • Describe the advantages and disadvantages of using an exponential function to represent the depreciation of the car over time. • The minivan depreciates $3,000 in the first year. Write either a linear or exponential function to represent the value of the car x years after it was sold.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,


Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Propositional Logic, Propositional Variables & Compound Propositions; Author: Neso Academy;https://www.youtube.com/watch?v=Ib5njCwNMdk;License: Standard YouTube License, CC-BY
Propositional Logic - Discrete math; Author: Charles Edeki - Math Computer Science Programming;https://www.youtube.com/watch?v=rL_8y2v1Guw;License: Standard YouTube License, CC-BY
DM-12-Propositional Logic-Basics; Author: GATEBOOK VIDEO LECTURES;https://www.youtube.com/watch?v=pzUBrJLIESU;License: Standard Youtube License
Lecture 1 - Propositional Logic; Author: nptelhrd;https://www.youtube.com/watch?v=xlUFkMKSB3Y;License: Standard YouTube License, CC-BY
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY