(a)
Two waves travelling on the same string can have different frequencies or not.
(a)
Explanation of Solution
The frequency of the wave is the number of ups and down variation of wave from its mean position.
When two waves are travelling on the same string the waves get superimposed. The frequency of the waves depends upon the property of wave that can differ from one wave to another. So it is possible that two waves travelling on the same string can have different frequencies
Conclusion: Therefore, yes it is possible for two waves to have different frequencies of two waves that are travelling on the same string.
(b)
Two waves travelling on the same string can have different wavelengths or not.
(b)
Explanation of Solution
The wavelength is the measuring parameter of any
When two waves are travelling on the same string their wavelengths gets superimposed. The frequency of any wave describes the wavelength of the waves. At every unique frequency the wavelength of the spring is also unique. So any mechanical wave that is travelling on same string can have different wavelength.
Conclusion: Therefore, yes it is possible for two waves to have different wavelength of two waves that are travelling on the same string.
(c)
Two waves travelling on the same string can have different speed or not.
(c)
Explanation of Solution
The speed of any wave is the rate of travelling of wave from one medium to another.
When two waves are travelling on the same string the medium of propagation is same. For mechanical waves the product of frequency and wavelength is speed of the wave. That always has the same value for the same medium depending upon the mechanical property of the wave.
Conclusion: Therefore, no it is possible for two waves to have different speed of two waves that are travelling on the same string.
(d)
Two waves travelling on the same string can have different amplitudes or not.
(d)
Explanation of Solution
The amplitude of a wave is the maximum variation of the wave from its original position.
When two waves are travelling on the same string according to different mechanical properties of the string the amplitude of the waves also varies. That means two waves can have different displacements even though they are propagating in same string.
Conclusion: Therefore, yes it is possible for two waves to have different amplitudes of two waves that are travelling on the same string.
(e)
Two waves travelling on the same string can have same frequency but different wavelengths or not.
(e)
Explanation of Solution
The frequency of the wave is the number of ups and down variation of wave from its mean position and the wavelength is the measuring parameter of any radiation and light.
For any mechanical wave speed is the product of its frequency and wavelength. Since in the same propagating medium the speed cannot be changed so the product of frequency and wavelength will also be same. But for same frequency and different wavelength the product of two waves will not be same.
Conclusion: Therefore, no it is possible for two waves to have same frequency but different wavelengths that are travelling on the same string.
Want to see more full solutions like this?
Chapter 15 Solutions
University Physics With Modern Physics Technology Update, Books A La Carte Edition
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON