EBK ADVANCED ENGINEERING MATHEMATICS
EBK ADVANCED ENGINEERING MATHEMATICS
6th Edition
ISBN: 9781284127003
Author: ZILL
Publisher: JONES+BARTLETT LEARNING,LLC (CC)
bartleby

Videos

Question
Book Icon
Chapter 15, Problem 1CR
To determine

The solution of the given boundary value problem under given boundary conditions.

Expert Solution & Answer
Check Mark

Answer to Problem 1CR

The solution of boundary value problem is u(x,y)=2π0sinhαyα(1+α2)coshαπcosαxdα.

Explanation of Solution

Given:

The given boundary value problem is 2ux2+2uy2=0,x>0,0<y<π and boundary conditions are ux(0,y)=0,u(x,0)=0anduy(x,π)=ex.

Calculation:

The given boundary value problem is,

2ux2+2uy2=0.                                                                                                           (1)

Take Fourier transform on both sides of the above equation,

F{2ux2}+F{2uy2}=0d2Udx2α2U(α,y)=0

Therefore, the equation is,

d2Udx2α2U(α,y)=0

Apply Fourier cosine transform then the particular solution of the above equation is,

U(α,y)=c1coshαy+c2sinhαy.                                                                        (2)

At the given boundary condition u(x,0)=0, c1=0

Substitute the value of c1 in equation (2),

U(α,y)=c2sinhαy.                                                                                             (3)

At boundary condition,

uy(x,π)=ex

Take Fourier transform of the above equation,

U(α,π)=1α(1+α2).                                                                                              (4)

Partially differentiate the equation (3) with respect to y and substitute y=π,

U(α,π)=c2.                                                                                                           (5)

Equate the equations (4) and (5),

c2=1α(1+α2)

Substitute the value of c2 in equation (3),

U(α,y)=sinhαyα(1+α2)

Take inverse Fourier transform of the above equation and apply Fourier cosine transform,

F1{U(α,y)}=F1{sinhαyα(1+α2)}u(x,y)=2π0sinhαyα(1+α2)coshαπcosαxdα

Thus, the solution of boundary value problem is u(x,y)=2π0sinhαyα(1+α2)coshαπcosαxdα.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
How come that I marked ?
In Exercises 1-14, state whether each statement is true or false. If false, give a reason. 1. The set of stores located in the state of Wyoming is a well- defined set. 2. The set of the three best songs is a well-defined set. 3. maple = {oak, elm, maple, sycamore} 4{} cơ 5. {3, 6, 9, 12,...} and {2, 4, 6, 8, ...} are disjoint sets. 6. {Mercury, Venus, Earth, Mars} is an example of a set in roster form. 7. {candle, picture, lamp} = {picture, chair, lamp } 8. {apple, orange, banana, pear} is equivalent to {tomato, corn, spinach, radish}.
Exercises Evaluate the following limits. 1. lim cot x/ln x +01x 2. lim x² In x +014 3. lim x* x0+ 4. lim (cos√√x)1/x +014 5. lim x2/(1-cos x) x10 6. lim e*/* 818 7. lim (secx - tan x) x-x/2- 8. lim [1+(3/x)]* x→∞0

Chapter 15 Solutions

EBK ADVANCED ENGINEERING MATHEMATICS

Ch. 15.1 - Prob. 15ECh. 15.2 - Prob. 1ECh. 15.2 - Prob. 2ECh. 15.2 - Prob. 3ECh. 15.2 - Prob. 4ECh. 15.2 - Prob. 5ECh. 15.2 - Prob. 6ECh. 15.2 - Prob. 7ECh. 15.2 - Prob. 8ECh. 15.2 - Prob. 9ECh. 15.2 - Prob. 10ECh. 15.2 - Prob. 11ECh. 15.2 - Prob. 12ECh. 15.2 - Prob. 13ECh. 15.2 - Prob. 14ECh. 15.2 - Prob. 15ECh. 15.2 - Prob. 16ECh. 15.2 - Prob. 17ECh. 15.2 - Prob. 18ECh. 15.2 - Prob. 19ECh. 15.2 - Prob. 20ECh. 15.2 - Prob. 21ECh. 15.2 - Prob. 22ECh. 15.2 - Prob. 23ECh. 15.2 - Prob. 24ECh. 15.2 - Prob. 25ECh. 15.2 - Prob. 26ECh. 15.2 - Prob. 28ECh. 15.2 - Prob. 29ECh. 15.2 - Prob. 30ECh. 15.3 - Prob. 1ECh. 15.3 - Prob. 2ECh. 15.3 - Prob. 3ECh. 15.3 - Prob. 4ECh. 15.3 - Prob. 5ECh. 15.3 - Prob. 6ECh. 15.3 - Prob. 7ECh. 15.3 - Prob. 8ECh. 15.3 - Prob. 9ECh. 15.3 - Prob. 10ECh. 15.3 - Prob. 11ECh. 15.3 - Prob. 12ECh. 15.3 - Prob. 13ECh. 15.3 - Prob. 14ECh. 15.3 - Prob. 15ECh. 15.3 - Prob. 16ECh. 15.3 - Prob. 17ECh. 15.3 - Prob. 18ECh. 15.3 - Prob. 19ECh. 15.3 - Prob. 20ECh. 15.4 - Prob. 1ECh. 15.4 - Prob. 2ECh. 15.4 - Prob. 3ECh. 15.4 - Prob. 4ECh. 15.4 - Prob. 5ECh. 15.4 - Prob. 6ECh. 15.4 - Prob. 7ECh. 15.4 - Prob. 8ECh. 15.4 - Prob. 9ECh. 15.4 - Prob. 10ECh. 15.4 - Prob. 11ECh. 15.4 - Prob. 12ECh. 15.4 - Prob. 13ECh. 15.4 - Prob. 14ECh. 15.4 - Prob. 15ECh. 15.4 - Prob. 16ECh. 15.4 - Prob. 17ECh. 15.4 - Prob. 18ECh. 15.4 - Prob. 19ECh. 15.4 - Prob. 20ECh. 15.4 - Prob. 21ECh. 15.4 - Prob. 22ECh. 15.4 - Prob. 24ECh. 15.4 - Prob. 25ECh. 15.4 - Prob. 26ECh. 15.4 - Prob. 28ECh. 15 - Prob. 1CRCh. 15 - Prob. 2CRCh. 15 - Prob. 3CRCh. 15 - Prob. 4CRCh. 15 - Prob. 5CRCh. 15 - Prob. 6CRCh. 15 - Prob. 7CRCh. 15 - Prob. 8CRCh. 15 - Prob. 9CRCh. 15 - Prob. 10CRCh. 15 - Prob. 11CRCh. 15 - Prob. 12CRCh. 15 - Prob. 13CRCh. 15 - Prob. 14CRCh. 15 - Prob. 15CRCh. 15 - Prob. 18CRCh. 15 - Prob. 19CRCh. 15 - Prob. 20CRCh. 15 - Prob. 21CR
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,
But what is the Fourier Transform? A visual introduction.; Author: 3Blue1Brown;https://www.youtube.com/watch?v=spUNpyF58BY;License: Standard YouTube License, CC-BY