Describe the photo of the tea kettle at the beginning of this section in terms of

(i) How the heat is transferred to the kettle.
(ii) The amount of work done and by what agents
(iii) How the kettle maintains its internal energy.
Answer to Problem 1CQ
(i) The heat is transferred from the stove to the kettle.
(ii) Work is done from the evaporation of the water to the whistling of the kettle.
(iii)The kettle maintains its internal energy by heating the water inside it.
Explanation of Solution
Introduction:
The kettle on the stove takes thermal energy from the stove and uses it to convert water into steam at constant temperature. As the steam escapes, the kettle sounds a whistle.
The kettle in the picture is placed on the stove. The stove burns fuel and converts the chemical energy stored in the fuel into thermal energy. The base of the kettle is a good conductor of heat. The base of the kettle absorbs heat and transfers it to water inside the kettle. Thus the heat energy provided by the kettle is transferred to the water inside the kettle.
Water absorbs energy and its temperature increases. The molecules of water vibrate with increasing speeds when the temperature of water increases. When the temperature of water reaches the boiling point, water starts to change its state to steam. The molecules in steam are farther apart when compared to the molecules of water. Work is done against the intermolecular forces between the molecules of water, when water converts into steam. The energy for this purpose is taken from the heat energy supplied to the kettle.
As heat is continuously provided to water, more and more water vaporizes and the pressure inside the kettle increases. The spout of the kettle has two thin plates separated by a small gap, which allows the steam to escape. As the steam escapes through the narrow gap, it expands and in the process generates small vortices at the gap, which produces its characteristic whistle. When steam expands, the intermolecular separation further increases hence work is done. The energy of the steam is also converted to audible energy in the form of the whistle.
When water changes state, it does so at constant temperature. Internal energy of a body is proportional to its Kelvin temperature. Thus, the internal energy of the kettle remains constant. According to the first law of thermodynamics,
Here the change in the internal energy is
As the entire system gets hotter, work is done from the evaporation of the water to the whistling of the kettle.
As the base of the kettle absorbs heat and transfers it to water inside the kettle and this is how the kettle maintains its internal energy by heating the water inside it.
Want to see more full solutions like this?
Chapter 15 Solutions
COLLEGE PHYSICS
Additional Science Textbook Solutions
Biological Science (6th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
College Physics: A Strategic Approach (3rd Edition)
Biology: Life on Earth with Physiology (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
- An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forward
- An ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forwardA 0.185 H inductor is connected in series with a 98.5 Ω resistor and an ac source. The voltage across the inductor is vL=−(12.5V)sin[(476rad/s)t]vL. Derive an expression for the voltage vR across the resistor. Express your answer in terms of the variables L, R, VL (amplitude of the voltage across the inductor), ω, and t. What is vR at 2.13 ms ? Please explain all stepsarrow_forward
- A worker lifts a box under the following conditions:Horizontal distance (H): 30 cmInitial height (V): 60 cmVertical travel (D): 50 cmTorso rotation (A): 30°Frequency: 3 times/minute for 1 hourGrip: Good Question:What is the RWL for this task?What does this value mean in terms of occupational safety?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forward
- 3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





