Lewis structure for HC 2 O 4 − and C 2 O 4 2 − has to be drawn. Concept Introduction: Lewis dot symbol is used to represent the valence electrons of an atom or ion using dots surrounding the element symbol along four sides of the element symbol without maintaining exact order for the placement of dots. In Lewis dot symbol representation, the symbol of element is surrounded by "dots" indicating the number of valence electrons available for the element. The dots can be placed one at a time on all the four sides, further electron can be placed by pairing up with the first placed dots. According to the number of electrons added or removed, charge must be placed on the Lewis dot symbol for cations and anions. The valence electron is the number of electrons present in the outermost shell of the atom. The number of valence electrons will be same for the same group elements which are represented by Lewis dot symbol. To draw: The Lewis structure for the HC 2 O 4 − and C 2 O 4 2 − .
Lewis structure for HC 2 O 4 − and C 2 O 4 2 − has to be drawn. Concept Introduction: Lewis dot symbol is used to represent the valence electrons of an atom or ion using dots surrounding the element symbol along four sides of the element symbol without maintaining exact order for the placement of dots. In Lewis dot symbol representation, the symbol of element is surrounded by "dots" indicating the number of valence electrons available for the element. The dots can be placed one at a time on all the four sides, further electron can be placed by pairing up with the first placed dots. According to the number of electrons added or removed, charge must be placed on the Lewis dot symbol for cations and anions. The valence electron is the number of electrons present in the outermost shell of the atom. The number of valence electrons will be same for the same group elements which are represented by Lewis dot symbol. To draw: The Lewis structure for the HC 2 O 4 − and C 2 O 4 2 − .
Solution Summary: The author explains that Lewis dot symbol is used to represent the valence electrons of an atom or ion using dots surrounding the element symbol.
Interpretation: Lewis structure for HC2O4− and C2O42− has to be drawn.
Concept Introduction: Lewis dot symbol is used to represent the valence electrons of an atom or ion using dots surrounding the element symbol along four sides of the element symbol without maintaining exact order for the placement of dots.
In Lewis dot symbol representation, the symbol of element is surrounded by "dots" indicating the number of valence electrons available for the element. The dots can be placed one at a time on all the four sides, further electron can be placed by pairing up with the first placed dots. According to the number of electrons added or removed, charge must be placed on the Lewis dot symbol for cations and anions.
The valence electron is the number of electrons present in the outermost shell of the atom. The number of valence electrons will be same for the same group elements which are represented by Lewis dot symbol.
To draw: The Lewis structure for the HC2O4− and C2O42−.
(b)
Interpretation Introduction
Concept Introduction: Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
HCl+NH3→NH4++Cl-
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton the deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
To identify: The four species to be identified which can act as acid, base or both.
Here are the energies (in kcal/mol) for staggered and eclipsed interactions
for CH, CC, and CBr bonds
eclipsed (0°) staggered (60°)
bonds
CH/CH
1.0
0.0
CH/CC
1.3
0.0
Br:
CC/CC
3.0
0.9
Br
CH/CBr
1.8
0.0
CC / CBr
3.3
1.0
CBr / CBr
3.7
1.2
a) I've drawn the Newman projection for one of the staggered conformations of the molecule
above, looking down the C2-C3 bond. Draw Newman projections for the other two staggered
and the three eclipsed conformations (in order).
CH₂
H3C.
H'
H
Br
b) Calculate the relative energies for each of the conformations and write them below each
conformation.
90. Draw the stereoisomers obtained from each of the following reactions:
a.
H₂
b.
H₂
C.
H₂
Pd/C
Pd/C
Pd/C
36. The emission spectrum below for a one-electron (hydrogen-like) species in the gas
phase shows all the lines, before they merge together, resulting from transitions to the
first excited state from higher energy states. Line A has a wavelength of 434 nm.
BA
Increasing wavelength, λ
(a) What are the upper and lower principal quantum numbers corresponding to the lines
labeled A and B? (b) Identify the one-electron species that exhibits the spectrum.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.