
(a)
The maximum speed of the bob.
(a)

Answer to Problem 15.41P
The maximum speed of the bob is
Explanation of Solution
The formula to calculate amplitude is,
Here,
Substitute
The formula to calculate angular frequency is,
Here,
Substitute
The formula to calculate maximum speed is,
Substitute
Conclusion:
Therefore, the maximum speed of the bob is
(b)
The maximum acceleration of the bob.
(b)

Answer to Problem 15.41P
The maximum acceleration of the bob is
Explanation of Solution
The formula to calculate maximum acceleration of the bob is,
Substitute
Conclusion:
Therefore, the maximum acceleration of the bob is
(c)
The maximum restoring force of the bob.
(c)

Answer to Problem 15.41P
The maximum restoring force of the bob is
Explanation of Solution
The formula to calculate maximum restoring force of the bob is,
Here,
Substitute
Substitute
Conclusion:
Therefore, the maximum restoring force of the bob is
(d)
The maximum speed,
(d)

Answer to Problem 15.41P
The maximum speed of the bob is
Explanation of Solution
Consider the figure given below.
In triangle
The height of the bob is,
The law of conservation of energy is,
Substitute
Substitute
The formula for the moment of inertia of the pendulum is,
The equation for the conservation of energy is,
Here,
Substitute
Substitute
The force is maximum, when the angle is maximum.
The restoring force is calculated as,
Substitute
Conclusion:
Therefore, the maximum speed of the bob is
(e)
The answers of part (a), part (c) and part (d).
(e)

Explanation of Solution
The restoring force is defined as the force or torque that tends to restore a system to equilibrium after displacement.
The answers are closest but not exactly the same. The angular amplitude of
Conclusion:
Therefore, the answers are closest but not exactly the same.
Want to see more full solutions like this?
Chapter 15 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Please solve this problem correctly please and be sure to provide explanation on each step so I can understand what's been done thank you. (preferrably type out everything)arrow_forwardUse a calculation to determine how far the fishing boat is from the water level .Determine distance Yarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- 2. 1. Tube Rating Charts Name: Directions: For the given information state if the technique is safe or unsafe and why. 60 Hertz Stator Operation Effective Focal Spot Size- 0.6 mm Peak Kilovolts MA 2 150 140 130 120 110 100 90 80 70 2501 60 50 40 30 .01 .02 .04.06 .1 .2 .4.6 1 8 10 Maximum Exposure Time In Seconds Is an exposure of 80 kVp, 0.1 second and 200 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above? Is an exposure of 100 kVp, 0.9 second and 150 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above?arrow_forwardQ: You have a CO2 laser resonator (λ = 10.6 μm). It has two curved mirrors with R₁=10m, R2= 8m, and mirror separation /= 5m. Find: R2-10 m tl Z-O 12 R1-8 m 1. Confocal parameter. b= 21w2/2 =√1 (R1-1)(R2-1)(R1+R2-21)/R1+R2-21) 2. Beam waist at t₁ & t2- 3. Waist radius (wo). 4. 5. The radius of the laser beam outside the resonator and about 0.5m from R₂- Divergence angle. 6. Radius of curvature for phase front on the mirrors R₁ & R2-arrow_forwardNo chatgpt pls will upvotearrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning





