Figure 15.4 shows two curves representing particles undergoing simple harmonic motion . The correct description of these two motions is that the simple harmonic motion of particle B is (a) of larger angular frequency and larger amplitude than that of particle A, (b) of larger angular frequency and smaller amplitude than that of particle A, ( c ) of smaller angular frequency and larger amplitude than that of particle A, or (d) of smaller angular frequency and smaller amplitude than that of particle A.
Figure 15.4 shows two curves representing particles undergoing simple harmonic motion . The correct description of these two motions is that the simple harmonic motion of particle B is (a) of larger angular frequency and larger amplitude than that of particle A, (b) of larger angular frequency and smaller amplitude than that of particle A, ( c ) of smaller angular frequency and larger amplitude than that of particle A, or (d) of smaller angular frequency and smaller amplitude than that of particle A.
Figure 15.4 shows two curves representing particles undergoing simple harmonic motion. The correct description of these two motions is that the simple harmonic motion of particle B is (a) of larger angular frequency and larger amplitude than that of particle A, (b) of larger angular frequency and smaller amplitude than that of particle A, (c) of smaller angular frequency and larger amplitude than that of particle A, or (d) of smaller angular frequency and smaller amplitude than that of particle A.
Definition Definition Special type of oscillation where the force of restoration is directly proportional to the displacement of the object from its mean or initial position. If an object is in motion such that the acceleration of the object is directly proportional to its displacement (which helps the moving object return to its resting position) then the object is said to undergo a simple harmonic motion. An object undergoing SHM always moves like a wave.
Watch the video of Cooper’s play, while conducting and documenting your observation using a chosen observation tool.
Case Study 1b - Cooper
Carol has asked you to support the babies and toddler’s room educators this week. She has requested that you complete an observation on Cooper, who is a 10-month-old toddler.
Carol wants to see how well you conduct an observation and is interested in how you manage to communicate in any observations made, using a strengths-based, non-judgemental, anti-biased approach, as this is a fundamental part of creating a supportive and respectful culture at Little Catalysts ELC.
Video: Cooper's play (6:45 min)
Resources
Module 7 eLearns
Template: Learning story observation, Section 1
Template: Running record observation, Section 1
Template: Anecdotal record observation, Section 1
Video: Cooper's play (6:45 min)
Complete and upload an observation of Cooper to support educators in future curriculum planning. Choose one (1) of the observation…
1. An ideal gas is taken through a four process cycle abcda. State a has a pressure of 498,840 Pa. Complete the tables
and plot/label all states and processes on the PV graph. Complete the states and process diagrams on the last page.
Also, provide proper units for each column/row heading in the tables.
Pressure (Pa)
500,000
450,000
400,000
350,000
300,000
250,000
200,000
150,000
100,000
Process
ab
bc
cd
da
States
P( )
V( )
50,000
0
0.000
T = 500 K
T= 200 K
0.001
0.002
0.003
0.004
0.005
Volume (m^3)
Nature of Process
isothermal expansion to Vb = 0.005 m³ (T = 500 K)
isometric
isothermal compression to V₁ = 0.003 m³ (T = 200 K)
adiabatic compression to VA = 0.001 m³
b
C
a
T()
U ( )
Processes
a-b
Q( )
+802.852
W()
AU ( )
b-c
c→d
+101.928
da
Cycle
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.