Interpretation:
The equilibrium concentration of iodine gases has to be calculated.
Concept Introduction:
Equilibrium concentration: If Kc and the initial concentration for a reaction and calculate for both equilibrium concentration, and using the (ICE) chart and equilibrium constant and derived changes in respective reactants and products.
Equilibrium constant: Concentration of the products to the respective molar concentration of reactants it is called equilibrium constant. If the K value is less than one the reaction will move to the left side and the K values is higher (or) greater than one the reaction will move to the right side of reaction.
Kp and Kc: This equilibrium constants of gaseous mixtures, these difference between the two constants is that Kc is defined by molar concentrations, whereas Kp is defined by the partial pressures of the gasses inside a closed system.
Vaporized equilibrium: This conversion of liquid in gaseous phase is known as vaporization process. At starting the rate of condensation is less than the rate of evaporation but as evaporation continues the concentration of gaseous molecule in the vapour phase increase.
Answer to Problem 15.34QP
Explanation of Solution
To find: The each reactant product equilibrium concentration should be identified given the gas phase reaction.
Write and Analyze the given gas phase
The given equilibrium reaction has a homogenous process, then the equilibrium constant can also be represented by Kp, were the Kp represents partial pressure. Then the product molecule partial pressure is derived in step-2.
To find: Calculate equilibrium concentration (Kp) values for given the statement of equilibrium reaction.
Calculate and analyze the (Kp) values at
We derived here (Kp) values of (I2) dissociation reaction
First we derived the initial concentration of (I2) is
We consider the equilibrium expression in terms of the equilibrium concentration.
The obtained second (x) values are negative concentration, this physically impossible so we omitted this values. First (x) value is correct one.
The given iodine dissociation equilibrium reaction the respective reactant to give the two moles of products in the gas phase and this equilibrium reaction expression contains single conditions like gases phase, the equilibrium constant can also be represented by Kp, were the “P” partial pressure. The each molar concentration values are Kp derived given the gas phase reaction at
The molar concentration (M) values are derived given the iodine
Want to see more full solutions like this?
Chapter 15 Solutions
Connect 1 Semester Access Card for General Chemistry: The Essential Concepts
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY