Physics for Scientists and Engineers, Volume 1, Chapters 1-22
8th Edition
ISBN: 9781439048382
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 15.2CQ
(a)
To determine
Whether the given equations apply for an object moving in a straight line possess
(b)
To determine
The equations describing simple harmonic motion.
(c)
To determine
The quantity which appears in every equation of simple harmonic motion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sphere moves in simple harmonic motion with a frequency of 1.00 Hz and an amplitude of 4.90 cm.
What is the maximum magnitude of acceleration (in m/s2) of the sphere?
Where in the motion does the maximum acceleration occur?
Some passengers on an ocean cruise may suffer from motion sickness as the ship rocks back and forth on the waves. At one position on the ship, passengers experience a vertical motion of amplitude 1.5 m with a period of 13 s.
Part A: What is the maximum acceleration of the passengers during this motion?
Express your answer using one significant figure.
Part B: What fraction is this of g
? Express your answer using one significant figure.
A 4 kg block attached to a spring with a spring constant of 7 N/m oscillates horizontally on a frictionless table. Its velocity is 5 m/s when x0 = -0.1 m.
What is the amplitude of oscillation (in meters)?
Chapter 15 Solutions
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
Ch. 15 - A block on the end of a spring is pulled to...Ch. 15 - Consider a graphical representation (Fig. 15.3) of...Ch. 15 - Figure 15.4 shows two curves representing...Ch. 15 - An object of mass m is hung from a spring and set...Ch. 15 - The ball in Figure 15.13 moves in a circle of...Ch. 15 - The grandfather clock in the opening storyline...Ch. 15 - If a simple pendulum oscillates with small...Ch. 15 - You attach a block to the bottom end of a spring...Ch. 15 - A block-spring system vibrating on a frictionless,...Ch. 15 - An object-spring system moving with simple...
Ch. 15 - An object of mass 0.40 kg, hanging from a spring...Ch. 15 - A runaway railroad car, with mass 3.0 105 kg,...Ch. 15 - The position of an object moving with simple...Ch. 15 - If an object of mass m attached to a light spring...Ch. 15 - You stand on the end of a diving board and bounce...Ch. 15 - A mass-spring system moves with simple harmonic...Ch. 15 - A block with mass m = 0.1 kg oscillates with...Ch. 15 - For a simple harmonic oscillator, answer yes or no...Ch. 15 - The top end of a spring is held fixed. A block is...Ch. 15 - Which of the following statements is not true...Ch. 15 - A simple pendulum has a period of 2.5 s. (i) What...Ch. 15 - A simple pendulum is suspended from the ceiling of...Ch. 15 - A particle on a spring moves in simple harmonic...Ch. 15 - You are looking at a small, leafy tree. You do not...Ch. 15 - Prob. 15.2CQCh. 15 - If the coordinate of a particle varies as x = -A...Ch. 15 - A pendulum bob is made from a sphere filled with...Ch. 15 - Figure CQ15.5 shows graphs of the potential energy...Ch. 15 - A student thinks that any real vibration must be...Ch. 15 - The mechanical energy of an undamped block-spring...Ch. 15 - Is it possible to have damped oscillations when a...Ch. 15 - Will damped oscillations occur for any values of b...Ch. 15 - If a pendulum clock keeps perfect time al the base...Ch. 15 - Prob. 15.11CQCh. 15 - A simple pendulum can be modeled as exhibiting...Ch. 15 - Consider the simplified single-piston engine in...Ch. 15 - A 0.60-kg block attached to a spring with force...Ch. 15 - When a 4.25-kg object is placed on lop of a...Ch. 15 - A vertical spring stretches 3.9 cm when a 10-g...Ch. 15 - In an engine, a piston oscillates with simpler...Ch. 15 - The position of a particle is given by the...Ch. 15 - A piston in a gasoline engine is in simple...Ch. 15 - A 1.00-kg object is attached to a horizontal...Ch. 15 - A simple harmonic oscillator takes 12.0 s to...Ch. 15 - A 7.00-kg object is hung from the bottom end of a...Ch. 15 - At an outdoor market, a bunch of bananas attached...Ch. 15 - A vibration sensor, used in testing a washing...Ch. 15 - (a) A hanging spring stretches by 35.0 cm when an...Ch. 15 - Review. A particle moves along the x axis. It is...Ch. 15 - A ball dropped from a height of 4.00 m makes an...Ch. 15 - A particle moving along the x axis in simple...Ch. 15 - The initial position, velocity, and acceleration...Ch. 15 - A particle moves in simple harmonic motion with a...Ch. 15 - A 1.00-kg glider attached to a spring with a force...Ch. 15 - A 0.500-kg object attached to a spring with a...Ch. 15 - You attach an object to the bottom end of a...Ch. 15 - To test the resiliency of its bumper during...Ch. 15 - A 200-g block is attached to a horizontal spring...Ch. 15 - A block of unknown mass is attached to a spring...Ch. 15 - A block-spring system oscillates with an amplitude...Ch. 15 - A particle executes simple harmonic motion with an...Ch. 15 - The amplitude of a system moving in simple...Ch. 15 - A 50.0-g object connected to a spring with a force...Ch. 15 - A 2.00-kg object is attached to a spring and...Ch. 15 - A simple harmonic oscillator of amplitude A has a...Ch. 15 - Review. A 65.0-kg bungee jumper steps off a bridge...Ch. 15 - Review. A 0.250-kg block resting on a...Ch. 15 - Prob. 15.32PCh. 15 - While driving behind a car traveling at 3.00 m/s,...Ch. 15 - A seconds pendulum is one that moves through its...Ch. 15 - A simple pendulum makes 120 complete oscillations...Ch. 15 - A particle of mass m slides without friction...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - The angular position of a pendulum is represented...Ch. 15 - Consider the physical pendulum of Figure 15.16....Ch. 15 - Prob. 15.41PCh. 15 - A very light rigid rod of length 0.500 m extends...Ch. 15 - Review. A simple pendulum is 5.00 m long. What is...Ch. 15 - A small object is attached to the end of a string...Ch. 15 - A watch balance wheel (Fig. P15.25) has a period...Ch. 15 - A pendulum with a length of 1.00 m is released...Ch. 15 - A 10.6-kg object oscillates at the end of a...Ch. 15 - Show that the time rate of change of mechanical...Ch. 15 - Show that Equation 15.32 is a solution of Equation...Ch. 15 - A baby bounces up and down in her crib. Her mass...Ch. 15 - As you enter a fine restaurant, you realize that...Ch. 15 - A block weighing 40.0 N is suspended from a spring...Ch. 15 - A 2.00-kg object attached to a spring moves...Ch. 15 - Considering an undamped, forced oscillator (b =...Ch. 15 - Damping is negligible for a 0.150-kg object...Ch. 15 - The mass of the deuterium molecule (D2) is twice...Ch. 15 - An object of mass m moves in simple harmonic...Ch. 15 - Review. This problem extends the reasoning of...Ch. 15 - A small ball of mass M is attached to the end of a...Ch. 15 - Review. A rock rests on a concrete sidewalk. An...Ch. 15 - Four people, each with a mass of 72.4 kg, are in a...Ch. 15 - To account for the walking speed of a bipedal or...Ch. 15 - Prob. 15.63APCh. 15 - An object attached to a spring vibrates with...Ch. 15 - Review. A large block P attached to a light spring...Ch. 15 - Review. A large block P attached to a light spring...Ch. 15 - A pendulum of length L and mass M has a spring of...Ch. 15 - A block of mass m is connected to two springs of...Ch. 15 - A horizontal plank of mass 5.00 kg and length 2.00...Ch. 15 - A horizontal plank of mass m and length L is...Ch. 15 - Review. A particle of mass 4.00 kg is attached to...Ch. 15 - A ball of mass m is connected to two rubber bands...Ch. 15 - Review. One end of a light spring with force...Ch. 15 - People who ride motorcycles and bicycles learn to...Ch. 15 - A simple pendulum with a length of 2.23 m and a...Ch. 15 - When a block of mass M, connected to the end of a...Ch. 15 - Review. A light balloon filled with helium of...Ch. 15 - Consider the damped oscillator illustrated in...Ch. 15 - A particle with a mass of 0.500 kg is attached to...Ch. 15 - Your thumb squeaks on a plate you have just...Ch. 15 - Review. A lobstermans buoy is a solid wooden...Ch. 15 - Prob. 15.82APCh. 15 - Two identical steel balls, each of mass 67.4 g,...Ch. 15 - A smaller disk of radius r and mass m is attached...Ch. 15 - An object of mass m1 = 9.00 kg is in equilibrium...Ch. 15 - Review. Why is the following situation impassible?...Ch. 15 - A block of mass M is connected to a spring of mass...Ch. 15 - Review. A system consists of a spring with force...Ch. 15 - A light, cubical container of volume a3 is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- We do not need the analogy in Equation 16.30 to write expressions for the translational displacement of a pendulum bob along the circular arc s(t), translational speed v(t), and translational acceleration a(t). Show that they are given by s(t) = smax cos (smpt + ) v(t) = vmax sin (smpt + ) a(t) = amax cos(smpt + ) respectively, where smax = max with being the length of the pendulum, vmax = smax smp, and amax = smax smp2.arrow_forwardImagine you've constructed a pendulum at home and measured the length of the rope and the period. The goal here is to create a graph where the slope corresponds to the gravitational acceleration constant. For that you have to get an X and a Y. First, you have these 2 equations as a starting point: T= 2π/ω and ω= sqrt(g/L). Play with the equations to construct an equation for a linear graph with the form: Y=mX+b where the slope m=g. Identify clearly what X and Y represent. The equation should look like: ? = g(? + ?)arrow_forwardWhat positive value of x/A gives v= 0.56 v_max, where A is the amplitude of the motion?arrow_forward
- A particle moves with simple harmonic motion between two points which are 11.8 cm apart. At the instant when the particle is 2.0 cm from one of the points, its acceleration is 48.0 cms−2. Calculate the absolute value of the velocity of the particle at the same instant. Give your answer in m/s.arrow_forward(0, 0) The graph of one cycle of the displacement x as a function of time t for a particle in simple harmonic motion is shown. Which of the following is the corresponding graphs for velocity v as a function of time t and acceleration a as a function of time t for the particle. (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) D E A B D E a vs. t V vs. tarrow_forwardA body oscillates with simple harmonic mo- tion along the x-axis. Its displacement varies with time according to the equation x(t) = A sin(wt+o). If A = 7 m, w = 3.897 rad/s, and = 1.0472 rad, what is the acceleration of the body at t = 3 s? Note: The argument of the sine function is in radians rather than degrees. Answer in units of m/s². Answer in units of m/s².arrow_forward
- The frequency of oscillations of a simple pendulum is given by: j = Vi where g = 9.8 ms? and L is the length of the pendulum. At the time t = 0 two simple pendulums with lengths L1 and L2 had the same angle relative to the vertical direction. Determine the time at which they will have the same angle relative to the vertical direction again, given that L2/L, = 9/25 and f1 = 0.2 sª.arrow_forwardBlock A in Figure P13-29 is given an initial velocity of 6 m/s up the incline. It comes to a stop in distance d and then slides back down the incline with uniform acceleration. Determine (a) the distance d and (b) the velocity of A when it returns to its original point. FIGURE P13-29arrow_forwardA pendulum in (Figure 1) has a swinging motion such that 0 = [-0.101 sin(4.55t) +0.3 cos (4.55t)] rad, where t is in seconds, and the arguments for the sine and cosine are in radians. Assume L = 0.4 m. Figure L 0 < 1 of 1 Part A Determine the magnitude of the velocity of the bob when 0 = 0º. Express your answer to three significant figures and include the appropriate units. v= Part B li Submit a = Value Submit μА Request Answer Determine the magnitude of the acceleration of the bob when 0 = 0°. Express your answer to three significant figures and include the appropriate units. Provide Feedback μA Value Units Request Answer ? Units ?arrow_forward
- A body oscillates with simple harmonic mo- tion along the x-axis. Its displacement varies with time according to the equation x(t) = A sin(ω t + φ) . If A = 7 m, ω = 3.272 rad/s, and φ = 1.0472 rad, what is the acceleration of the body at t = 2 s? Note: The argument of the sine function is in radians rather than degrees. Answer in units of m/s2.arrow_forwardThe simple pendulum is a mechanical device that illustrates several concepts about forces and motion. The simple pendulum uses a string or cord to suspend a mass at some length from a pivot point. The mass is called the bob and when displaced from rest, will move in simple harmonic motion. The movement of a pendulum is the acceleration by gravity on the suspended bob. Newton showed that the acceleration of all bodies by gravity is equal. In other words, the amount of mass does not affect the acceleration from gravity, all bodies fall at the same rate. To test this and also to find the acceleration from gravity, two different masses will be used and the pendulum’s period will be measured. If Newton’s theory is correct, the heavier mass suspended from the same length of string on the pendulum will have the same period. The last thing this experiment will show is that the relationship between the length of the pendulum and the pendulum’s period (the time for one cycle) can be described by…arrow_forwardAfter landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 55.0 cm . The explorer finds that the pendulum completes 109 full swing cycles in a time of 142 s . How does one determine the magnitude of the gravitational acceleration on this planet, expressed in meters per second?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY