Concept explainers
The reactions at supports
Answer to Problem 15.1P
The support reaction
The support reaction
The support reaction
Explanation of Solution
Given:
The flexural rigidity,
Concept Used:
Write the expression for fixed end moments in a beam with uniformly distributed load.
Here, the fixed end moment is FEM, the load on the beam is
Write the expression for fixed end moments in a beam with point load at mid-span.
Write the expression for load matrix.
Here,
Calculations:
Calculate the fixed end moment at
Substitute
Write the force matrix from the known force.
Write the displacement matrix for the known displacement.
Develop the stiffness matrix.
Calculate the member stiffness matrix for member 1.
Substitute
Calculate the member stiffness matrix for member 2.
Substitute
Calculate the stiffness matrix for the beam.
Substitute the values of
Substitute the values of stiffness matrix and displacement matrix in Equation (III).
Solve the above matrix to get the values of displacement.
Solve Equations (VIII), (IX) and (X).
Calculate the value of
Substitute
Calculate the value of
Substitute
Calculate the value of
Substitute
Conclusion:
The support reaction
The support reaction
The support reaction
Want to see more full solutions like this?
Chapter 15 Solutions
Structural Analysis, Student Value Edition
- Assignment 1 Q1) Determine the member end forces of the frames shown by utilizing structural symmetry and anti-symm. (Derive each member forces and show BMD,SD,AFD) 20 kN/m 40 kN/m C D Hinge Ẹ G A -3m 5m B 5 m 3 m- E, I, A constant 12 marrow_forwardA1.3- Given the floor plan shown in Figure 3. The thickness of the slab is 150mm. The floor finish, ceiling and partition load is 1.8 kN/m². The live load on the floor is 2.4 kN/m². The beams cross section dimension is 300mmx600mm. Assuming the unit weight of concrete is equal to 24 kN/m². It is required to: a) Show tributary areas for all the beams on the plan; b) Calculate the load carried by beams B1 (on gridline A, between 1 and 3), B2 (on gridline B, between 1 and 3)and B3 (on gridline 3, between A and C); c) Calculate the load carried by column C1 per floor (ignore the self weight of the column). A 1 B1 2 B2 B Cl 8.0 m Figure 3 8.0 m B3 23 3 *2.0m 5.0 m 4.0 m +1.5m+arrow_forwardPlease show all steps and make sure to use the type of coordinate system (tangential/normal) specified.arrow_forward
- Find required inlet length to intercept the entire flow and the capacity of a 3m long curb inlet. A gutter with z=20, n=0.015 and a slope of %1 caring a flow of 0.25 S m³/s curb depression (a=60 mm). Assume the only %75 of the upstream flow will be intercepted, what the length of curb inlet will be needed.arrow_forwardPlease answer this and show me the step by step solutiarrow_forward•Two types of concrete storm water drains are comparing: 1-pipe diameter 2m running full. 2-open channel rectangular profile, bottom width 2m and water depth 1.0 m. The drains are laid at gradient of %1.0; manning coefficient=0.013. Determine the velocity of flow and discharge rate for the circular drain. Determine the velocity of flow and discharge rate for the rectangular open culvert.arrow_forward
- A1.2- For the frame shown in Figure 2, draw the bending moment, shear force, and axial force diagrams for the shown factored loading case. Note: All loads indicated in Figure 2 are already factored. W₁ = 25 kN/m Figure 2 777 6.0 m M= 10 kN.m P₁ = 20 kN 2.5 marrow_forwardPlease calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forwardPlease calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forward
- Please calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forwardPlease answer the following and show me the step by step soarrow_forwardPlss answer the following show me the solution step bg steparrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning