Concept explainers
The reactions at supports
Answer to Problem 15.1P
The support reaction
The support reaction
The support reaction
Explanation of Solution
Given:
The flexural rigidity,
Concept Used:
Write the expression for fixed end moments in a beam with uniformly distributed load.
Here, the fixed end moment is FEM, the load on the beam is
Write the expression for fixed end moments in a beam with point load at mid-span.
Write the expression for load matrix.
Here,
Calculations:
Calculate the fixed end moment at
Substitute
Write the force matrix from the known force.
Write the displacement matrix for the known displacement.
Develop the stiffness matrix.
Calculate the member stiffness matrix for member 1.
Substitute
Calculate the member stiffness matrix for member 2.
Substitute
Calculate the stiffness matrix for the beam.
Substitute the values of
Substitute the values of stiffness matrix and displacement matrix in Equation (III).
Solve the above matrix to get the values of displacement.
Solve Equations (VIII), (IX) and (X).
Calculate the value of
Substitute
Calculate the value of
Substitute
Calculate the value of
Substitute
Conclusion:
The support reaction
The support reaction
The support reaction
Want to see more full solutions like this?
- In order to solve the frame given below with the Force Method, remove restraints from joints A and G and draw only the bending moment diagrams Mo, M₁, M2 and M3 for this case. (25 Pts.) Note: Only bending moment diagrams that are used for the solution are required. There is no need to do any further calculations. 4 kN B I E D 2 kN/m H 3 m 3 m 4 m + 2 m 4marrow_forwardplease show complete solution with formulaarrow_forwardplease show complete solution, thank youarrow_forward
- please show complete solution, step by step, thanksarrow_forward1. What is the weight of each block shown below in pounds? A) 2’x2’x10’ Steel Bar w=490lb/ft^3 B) 5’x4’x3’ Concrete Block w=150lb/ft^3 A) 3’x10’x2’ Wood block w=50lb/ft^3 2.The 6” thick, 20’x25’ concrete slab weights 150lbs/ft^3 and has an area load of 50lbs/ft^2 (psf). What is the total load of the floor?arrow_forwardLab Assignment #2 Loads: UDL and Concentrated Name: TA 1. Use the provided beam models to solve for the equivalent concentrated load of each beam configuration. Draw the loading conditions showing the equivalent concentrated load(s). a) w = 30lbs/ft 6ft 6ft c) w = 50lbs/ft 12ft w = 70lbs/ft b) 4ft w = 20lbs/ft w = 40lbs/ft d) 9ft 2. Find the equivalent concentrated load(s) for the bags of cement stacked on the dock as shown here. Each bag weighs 100 lbs and is 12 inches long. Draw the loading conditions for each showing the equivalent concentrated load(s). 1 bag = 100lbs L= 12 ft L= 6ft L= 8ftarrow_forward
- please show the complete solution, step by step process, thanksarrow_forwardThe rectangular gate shown in figure rotates about an axis through N. If a=3.3 ft,b=1.3 ft, d=2 ft, and the width perpendicular to the plane of the figure is 3 ft, what torque(applied to the shaft through N) is required to hold the gate closed?arrow_forwardAn elevated tank feeds a simple pipe system as shown. There is a fire hydrant atpoint C. The minimum allowable pressure at point C is 22 psig for firefighting requirements.What are the maximum static head (in ft) as well as pressure (in psig) at point C (i.e. nodischarge in the system)? Do we meet the pressure requirement for firefighting? (Please donot worry about L or d in the figure below)arrow_forward
- 12. For the beam loaded and supported as shown, determine the following using Point Load Analogous via Integration: a. the rotation at the left support. b. the deflection at midspan R1 1 . m 600 N/m 3 m + 2 m R2arrow_forward14. Find the reaction R and the moment at the wall for the propped beam shown below using Point Load Analogous via Integration: 16 kN/m 000 4.5m 4.5marrow_forward13. Determine the moment at supports A and B of the fixed ended beam loaded as shown using Point Load Analogous via Integration: 10 kN/m 9 kN/m 3 m 3 m 12 kN/marrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning