
Consider the incompressible viscous flow of air between two infinitely long parallel plates separated by a distance h. The bottom plate is stationary. and the top plate is moving at the constant velocity u. in the direction of the plate. Assume that no pressure gradient exists in the flow direction.
a. Obtain an expression for the variation of velocity between the plates.
b. If
(a)

The expression for the variation of velocity between the plates.
Answer to Problem 15.1P
The expression for the variation of velocity between the plates is
Explanation of Solution
Given:
The distance between the plates is
The velocity of the top plate is
Formula used:
The expression for the pressure gradient is given as,
Here,
Calculation:
The figure (1) is showing the incompressible flow of air between two infinitely long plates,
Figure (1)
The given flow is in the x direction only and the no pressure gradient in the direction of flow,
The expression for the pressure gradient is given as,
Substitute the value of pressure gradient,
Integrate the above expression,
Again integrate the above expression,
Apply boundary condition at
Substitute the values in equation (1)
At
Substitute the values in equation (1),
Substitute the values of
Conclusion:
Therefore, the expression for the variation of velocity between the plates is
(b)

The shear stress on the top and the bottom plates.
Answer to Problem 15.1P
The shear stress on the top and the bottom plates is
Explanation of Solution
Given:
The temperature of the fluid is
The velocity of the top plate is
The distance between the plates is
Formula used:
The expression to calculate the shear stress is given as,
Here,
The expression of the relation between the viscosity and the temperature is given as,
Here,
Calculation:
It is known that the value of
The expression of the relation between the viscosity and the temperature is given as,
Substitute the values in above expression
The expression to calculate the stress is given as,
Substitute the values from equation (2),
Substitute the values in above expression,
The value of shear stress is constant. Thus, the shear stress will be same on top and bottom of the plates.
Conclusion:
Therefore, the shear stress on the top and the bottom plates is
Want to see more full solutions like this?
Chapter 15 Solutions
Loose Leaf for Fundamentals of Aerodynamics
- 2. Figure below shows a U-tube manometer open at both ends and containing a column of liquid mercury of length l and specific weight y. Considering a small displacement x of the manometer meniscus from its equilibrium position (or datum), determine the equivalent spring constant associated with the restoring force. Datum Area, Aarrow_forward1. The consequences of a head-on collision of two automobiles can be studied by considering the impact of the automobile on a barrier, as shown in figure below. Construct a mathematical model (i.e., draw the diagram) by considering the masses of the automobile body, engine, transmission, and suspension and the elasticity of the bumpers, radiator, sheet metal body, driveline, and engine mounts.arrow_forward3.) 15.40 – Collar B moves up at constant velocity vB = 1.5 m/s. Rod AB has length = 1.2 m. The incline is at angle = 25°. Compute an expression for the angular velocity of rod AB, ė and the velocity of end A of the rod (✓✓) as a function of v₂,1,0,0. Then compute numerical answers for ȧ & y_ with 0 = 50°.arrow_forward
- 2.) 15.12 The assembly shown consists of the straight rod ABC which passes through and is welded to the grectangular plate DEFH. The assembly rotates about the axis AC with a constant angular velocity of 9 rad/s. Knowing that the motion when viewed from C is counterclockwise, determine the velocity and acceleration of corner F.arrow_forward500 Q3: The attachment shown in Fig.3 is made of 1040 HR. The static force is 30 kN. Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). Fig. 3 All dimension in mm 30 kN 100 (10 Marks)arrow_forward(read image) (answer given)arrow_forward
- A cylinder and a disk are used as pulleys, as shown in the figure. Using the data given in the figure, if a body of mass m = 3 kg is released from rest after falling a height h 1.5 m, find: a) The velocity of the body. b) The angular velocity of the disk. c) The number of revolutions the cylinder has made. T₁ F Rd = 0.2 m md = 2 kg T T₂1 Rc = 0.4 m mc = 5 kg ☐ m = 3 kgarrow_forward(read image) (answer given)arrow_forward11-5. Compute all the dimensional changes for the steel bar when subjected to the loads shown. The proportional limit of the steel is 230 MPa. 265 kN 100 mm 600 kN 25 mm thickness X Z 600 kN 450 mm E=207×103 MPa; μ= 0.25 265 kNarrow_forward
- T₁ F Rd = 0.2 m md = 2 kg T₂ Tz1 Rc = 0.4 m mc = 5 kg m = 3 kgarrow_forward2. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. (x + 2)²y" + (x + 2)y' - y = 0 ; Hint: Let: z = x+2arrow_forward1. Find a power series solution in powers of x. y" - y' + x²y = 0arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





