Concept explainers
Types of kinematic surveys.
Answer to Problem 15.1P
Types of kinematic
1. Real time kinematic survey
2. Post process kinematic survey
Explanation of Solution
Surveying plays is an important role in all engineering projects. By measuring the horizontal and vertical direction and angle, it is an art and science to find the relative position of various valuable points or stations on the earth's surface. We prepare plans, maps, or layout by these points.
The most effective and fastest survey technique is Kinematic surveying. The relative positioning technique is used for the observation of the carrier phase shift. The cinematic survey can provide the coordinate of the points with the fastest values while the receiver is motionless or in motion.
The two types of kinematic survey are:
1. Real time kinematic survey
The Real time kinematic survey (RTK) is also referred to as the relative positioning technique that measures the position in real time using two global navigation satellite systems (GNSS). One is placed at a static point with established coordinates and is known as the base station. It carries a large frequency radio to the second unit (known as the rover) with its raw observation and the rover carries both observations to determine a position relative to the base location in real time.
RTK surveying requires positive communication between base and rover units and works best with short baselines as the accuracy of measurements or analysis of RTK decreases as the length of the baseline increases.
2. Post process kinematic survey
A post process kinematic survey requires a base receiver that collects data at the same time rate as the rover. In the Kinematic survey of post processes, the identified coordinates should be stored in the survey controller and the observations of the raw global navigation satellite system (GNSS) are saved in the recipient until the fieldwork is completed. The data are then processed by the same software and processing techniques used in static surveys in the office.
Want to see more full solutions like this?
Chapter 15 Solutions
Elementary Surveying: An Introduction to Geomatics Plus Mastering Engineering with Pearson eText -- Access Card Package (15th Edition)
- Star Star to Dalta EX: find the Reg Resistance Sthan A and B 10 A ML lon MWL lon 102 ww bo monedasarrow_forwardF1 ୪ α В F2 You and your friends are planning to move the log. The log needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? = Your friends had to pull at: magnitude in Newton, F2 = 2405 direction in degrees, B = -7.72 × N × degarrow_forwardNeed hekoarrow_forward
- A B 0 B F C The force F = 319 N acts on the frame shown in picture. Resolve this force into components acting along memebers AB and AC to determine the magnitude of each component. The angle mesurements are 0 = 33° and B = 40°. magnitude in member AB in Newton: N magnitude in memeber AC in Newton: Narrow_forwardThe force vector F has a magnitude of F = 450 lb and acts 15.7° with respect to vertical as at point A at an angle → = shown. The force F is balanced by the tension forces parallel to the two rods AC and AB such that the vector equation → F+F AC + FAB = 0 is satisfied. Determine the tension forces in the two rods in Cartesian Vector Notation. с a b B CC + BY NC SA 2013 Michael Swanbom A NF Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 5.9 ft b C 3 ft 3.1 ft FAC = FAB= ĵ) lb lb + +arrow_forwardF2 Y B V 5 4 3 F1 X F3 → The given forces are F₁ = 20 kN, F2= 28 kN, and F3 = 61 kN, with given ratio for F₁ and angles of B = 51° and y = 67°. Find the resultant force. First in Cartesian Vector Notation: FR = 2 + j) kN Then, find the magnitude and direction: magnitude in kN: kN conventional direction (counter clockwise from positive X axis) in degrees: degarrow_forward
- Y F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forwardMy desk has a weight of 193.044 lbf on the Earch's surface where the acceleration of gravity is 32.174 ft $2 What is its weight in pounds force (lbf) on Mars and its mass in pounds mass (lbm) on Mars where the acceleration of gravity is 5.35 ft $2 Weightmars = lbf, Massmars = Ibmarrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- Y F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forwardPlease show all steps and give answers in the cartesian coordinate system providedarrow_forwardPlease show all stepsarrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning