![Chemistry, Loose-leaf Edition (8th Edition)](https://www.bartleby.com/isbn_cover_images/9780135210123/9780135210123_largeCoverImage.gif)
The oxidation of sulfur dioxide to give sulfurtrioxide is an important step in the industrial process for thesynthesis of sulfuric acid.
What is the equilibrium constant expression,
What is the equilibrium constant expression,
How is the equilibrium constant
![Check Mark](/static/check-mark.png)
Interpretation:
The necessary expressions need to be given for the equilibrium constant & reverse equilibrium constant for the given reaction.
Concept introduction:
The equilibrium constant of a chemical reaction is the value of the reaction quotient of the specific reaction at chemical equilibrium.
For a general reaction as follows:
The expression for the equilibrium constant is as follows:
Answer to Problem 15.1P
Also,
Relation:
Explanation of Solution
At equilibrium, there will be no change in the concentration of products and reactants takes place.
Consider the following reaction.
The forward half arrow indicates the forward reaction where A & B reacts to form C & D. The half-back arrow indicates the backward reaction where C & D reacts to form A & B. at the chemical equilibrium these forward & backward reactions occur at the same rate. Therefore, no change in chemical composition happens. In the above reaction a, b, c & d indicates the stoichiometric coefficients.
The equilibrium constant is the ratio between the concentration of the products with the power of the stoichiometric coefficient&the same of the reactants.
So, the equilibrium constant (Kc) of the forward reaction can be expressed as,
Now consider the given reaction.
To derive the expression for the equilibrium constant, consider the forward reaction. The forward reaction is the reaction between SO2& O2 to produce SO3.
So, according to the above description, the equilibrium constant can be expressed as follows.
The reverse equilibrium, Kc (reverse) is related to the backward reaction. The backward reaction is the reaction of SO3to form SO2& O2.
So, the equilibrium constant of the backward reaction (Kc, reverse) can be expressed as
Consider the derived expression for Kc which is,
This is equal to
So, it is clear that
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry, Loose-leaf Edition (8th Edition)
Additional Science Textbook Solutions
Microbiology: An Introduction
Applications and Investigations in Earth Science (9th Edition)
Organic Chemistry (8th Edition)
Chemistry: Structure and Properties (2nd Edition)
Campbell Essential Biology with Physiology (5th Edition)
Human Anatomy & Physiology (2nd Edition)
- Please answer the question and provide a detailed drawing of the structure. If there will not be a new C – C bond, then the box under the drawing area will be checked. Will the following reaction make a molecule with a new C – C bond as its major product: Draw the major organic product or products, if the reaction will work. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry.arrow_forwardPlease do not use AI. AI cannot "see" the molecules properly, and it therefore gives the wrong answer while giving incorrect descriptions of the visual images we're looking at. All of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forwardPlease answer the question and provide detailed explanations.arrow_forward
- All of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forward5. Fill in the missing molecules in the following reaction pathway. TMSO Heat + CI then HF O₂N (1.0 equiv) AICI 3 OMearrow_forwarde. O₂N NO2 1. excess H2, Pd/C 2. excess NaNO2, HCI 3. excess CuCNarrow_forward
- Help with a periodic table task.' Procedure Part 1: Customizing a Periodic Table Use a textbook or other valid source to determine which elements are metals, nonmetals, metalloids (called semimetals in some texts), alkali metals, alkaline earth metals, transition metals, halogens, and noble gases. Download and print a copy of the Periodic Table of Elements. Use colored pencils, colorful highlighters, or computer drawing tools to devise a schematic for designating each of the following on the periodic table: Group numbers Period number Labels for these groups: alkali metals, alkaline earth metals, transition metals, inner transition metals (lanthanides and actinides), other metals, metalloids (semimetals), other nonmetals, halogens, and noble gases Metals, nonmetals, and metalloids Note: Write the group and period numbers and color/highlight each element for categorization. Be sure to include a key for the schematic. Take a photo of the completed periodic table and upload the…arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardCan you explain these two problems for mearrow_forward
- 个 ^ Blackboard x Organic Chemistry II Lecture (m x Aktiv Learning App x → C app.aktiv.com ← Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 28 of 35 :OH H HH KO Select to Edit Arrows CH CH₂OK, CH CH2OH 5+ H :0: Donearrow_forwardCan you explain those two problems for me please.arrow_forwardDo we need to draw the "ethyne" first for this problem? im confusedarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)