The p H of the solution has to be calculated at 25 ° C Concept Introduction: Acid ionization constant K a : The equilibrium expression for the reaction HA ( a q ) → H + ( a q ) + A - ( a q ) is given below. K a = [ H + ][A - ] [ HA] Where K a is acid ionization constant, [ H + ] is concentration of hydrogen ion, [ A - ] is concentration of acid anion, [ HA] is concentration of the acid Base ionization constant K b The equilibrium expression for the ionization of weak base B will be, B ( a q ) + H 2 O ( l ) → HB + ( a q ) + OH - ( a q ) K b = [ HB + ] [ OH - ] [ B ] Where K b is base ionization constant, [ OH − ] is concentration of hydroxide ion, [ HB + ] is concentration of conjugate acid, [ B] is concentration of the base Relationship between K a and K b K a × K b =K w pH definition: The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale. The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration. pH = -log[H 3 O + ]
The p H of the solution has to be calculated at 25 ° C Concept Introduction: Acid ionization constant K a : The equilibrium expression for the reaction HA ( a q ) → H + ( a q ) + A - ( a q ) is given below. K a = [ H + ][A - ] [ HA] Where K a is acid ionization constant, [ H + ] is concentration of hydrogen ion, [ A - ] is concentration of acid anion, [ HA] is concentration of the acid Base ionization constant K b The equilibrium expression for the ionization of weak base B will be, B ( a q ) + H 2 O ( l ) → HB + ( a q ) + OH - ( a q ) K b = [ HB + ] [ OH - ] [ B ] Where K b is base ionization constant, [ OH − ] is concentration of hydroxide ion, [ HB + ] is concentration of conjugate acid, [ B] is concentration of the base Relationship between K a and K b K a × K b =K w pH definition: The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale. The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration. pH = -log[H 3 O + ]
Solution Summary: The author explains the equilibrium expression for the ionization of weak base B.
Definition Definition State where the components involved in a reversible reaction, namely reactants and product, do not change concentration any further with time. Chemical equilibrium results when the rate of the forward reaction becomes equal to the rate of the reverse reaction.
Chapter 15, Problem 15.156QP
Interpretation Introduction
Interpretation:
The pH of the solution has to be calculated at 25°C
Concept Introduction:
Acid ionization constantKa:
The equilibrium expression for the reaction HA(aq)→H+(aq)+A-(aq) is given below.
Ka=[H+][A-][HA]
Where Ka is acid ionization constant, [H+] is concentration of hydrogen ion, [A-] is concentration of acid anion, [HA] is concentration of the acid
Base ionization constantKb
The equilibrium expression for the ionization of weak base B will be,
B(aq)+H2O(l)→HB+(aq)+OH-(aq)
Kb=[HB+][OH-][B]
Where Kb is base ionization constant, [OH−] is concentration of hydroxide ion, [HB+] is concentration of conjugate acid, [B] is concentration of the base
Relationship betweenKaandKb
Ka×Kb=Kw
pH definition:
The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale.
The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration.
Here are the energies (in kcal/mol) for staggered and eclipsed interactions
for CH, CC, and CBr bonds
eclipsed (0°) staggered (60°)
bonds
CH/CH
1.0
0.0
CH/CC
1.3
0.0
Br:
CC/CC
3.0
0.9
Br
CH/CBr
1.8
0.0
CC / CBr
3.3
1.0
CBr / CBr
3.7
1.2
a) I've drawn the Newman projection for one of the staggered conformations of the molecule
above, looking down the C2-C3 bond. Draw Newman projections for the other two staggered
and the three eclipsed conformations (in order).
CH₂
H3C.
H'
H
Br
b) Calculate the relative energies for each of the conformations and write them below each
conformation.
90. Draw the stereoisomers obtained from each of the following reactions:
a.
H₂
b.
H₂
C.
H₂
Pd/C
Pd/C
Pd/C
36. The emission spectrum below for a one-electron (hydrogen-like) species in the gas
phase shows all the lines, before they merge together, resulting from transitions to the
first excited state from higher energy states. Line A has a wavelength of 434 nm.
BA
Increasing wavelength, λ
(a) What are the upper and lower principal quantum numbers corresponding to the lines
labeled A and B? (b) Identify the one-electron species that exhibits the spectrum.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.