Classical Mechanics
Classical Mechanics
5th Edition
ISBN: 9781891389221
Author: John R. Taylor
Publisher: University Science Books
Question
Book Icon
Chapter 15, Problem 15.111P
To determine

To prove F=μ0J.

Expert Solution & Answer
Check Mark

Answer to Problem 15.111P

It is proven that F=μ0J.

Explanation of Solution

Write the expression for Maxwell’s equation

    ×B1c2Et=μ0J        (I)

The above equation can be expressed as

    |ijkx1x2x3B1B2B3|1c(ct)(E1i+E2j+E3k)=μ0(J1i+J2j+J3k)

Expand the above equation.

    [B3x2B2x31cE1x4]i+[B1x3B3x11cE2x4]j+[B2x1B1x21cE3x4]k=(μ0J1)i+(μ0J2)j+(μ0J3)k        (II)

Equate the i^ components of the above equation.

    0+B3x2B2x3x4(E1c)=μ0J1        (III)

Equate the j^ components of equation (II).

    B3x1+0+B1x3x4(E2c)=μ0J2        (IV)

Equate the k^ components of equation (II).

    B2x1B1x2+0x4(E3c)=μ0J3        (V)

Write the expression for Maxwell’s equation.

    E=1ε0k

The above equation can be written as

    E1x1+E2x2+E3x3=1ε0k

Since J4=ck, substitute k=J4c in the above equation.

    E1x1+E2x2+E3x3=1ε0J4c1cE1x1+1cE2x2+1cE3x3=1ε0J4c2

Use c2=1μ0ε0 in the above equation.

    x1(E1c)+x2(E2c)+x3(E3c)=1ε0(μ0ε0)J4x1(E1c)+x2(E2c)+x3(E3c)=μ0J4        (VI)

Write the matrix form of F.

    F=[0B3B2E1cB30B1E2cB2B10E3cE1cE2cE3c0]        (VII)

Write the matrix for G.

    G=[+10000+10000+100001]        (VIII)

Write the equation for GF.

    GF=(x1x2x3x3x4)[0B3B2E1cB30B1E2cB2B10E3cE1cE2cE3c0]=(0+x2(B3)+x3(B2)x4(E1c)x1(B3)+0+x4(E2c)x1(B2)+x2(B1)+0x4(E3c)x1(E1c)+x2(E2c)+x3(E3c)+0)

Since F=GF, the matrix form of GF is given by

    GF=[0+x2(B3)+x3(B2)+x4(E1c)x1(B3)+0+x3(B1)+x4(E2c)x1(B2)+x2(B1)+0+x4(E3c)x1(E1c)+x2(E2c)+x3(E3c)+0]        (IX)

Write the matrix form of GF.

    GF=[+10000+10000+100001][0B3B2E1cB30B1E2cB2B10E3cE1cE2cE3c0]=[0+0+0+0B3+0+0+0B2+0+0+0E1c+0+0+00B3+0+00+0+0+00+B1+0+00E2c+0+00+0+B2+00+0B1+00+0+0+00+0E3c+00+0+0E1c0+0+0E2c0+0+0E3c0+0+0+0]=[0B3B2E1cB30B1E2cB2B10E3cE1cE2cE3c0]        (X)

Since =(x1x2x3x4) equation (IX) is written as

    F=[(0+x2(B2)+x3(B2)+x4(E1c))(x1(B3)+0+x3(B1)+x4(E2c))(x1(B2)+x2(B1)+0+x4(E3c)(x1(E1c)+x2(E2c)+x3(E3c)+0]=[μ0J1μ0J2μ0J3μ0J4]=μ0[J1J2J3J4]        (XI)

Since [J1J2J3J4]=J, equation (XI) is written as

    F=μ0J

Conclusion:

Therefore, it is proven that F=μ0J.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 15 Solutions

Classical Mechanics

Ch. 15 - Prob. 15.11PCh. 15 - Prob. 15.12PCh. 15 - Prob. 15.13PCh. 15 - Prob. 15.14PCh. 15 - Prob. 15.15PCh. 15 - Prob. 15.16PCh. 15 - Prob. 15.17PCh. 15 - Prob. 15.18PCh. 15 - Prob. 15.19PCh. 15 - Prob. 15.20PCh. 15 - Prob. 15.21PCh. 15 - Prob. 15.22PCh. 15 - Prob. 15.23PCh. 15 - Prob. 15.24PCh. 15 - Prob. 15.25PCh. 15 - Prob. 15.26PCh. 15 - Prob. 15.27PCh. 15 - Prob. 15.28PCh. 15 - Prob. 15.29PCh. 15 - Prob. 15.30PCh. 15 - Prob. 15.31PCh. 15 - Prob. 15.32PCh. 15 - Prob. 15.33PCh. 15 - Prob. 15.34PCh. 15 - Prob. 15.35PCh. 15 - Prob. 15.36PCh. 15 - Prob. 15.37PCh. 15 - Prob. 15.38PCh. 15 - Prob. 15.39PCh. 15 - Prob. 15.40PCh. 15 - Prob. 15.41PCh. 15 - Prob. 15.42PCh. 15 - Prob. 15.43PCh. 15 - Prob. 15.44PCh. 15 - Prob. 15.45PCh. 15 - Prob. 15.46PCh. 15 - Prob. 15.47PCh. 15 - Prob. 15.48PCh. 15 - Prob. 15.49PCh. 15 - Prob. 15.50PCh. 15 - Prob. 15.51PCh. 15 - Prob. 15.52PCh. 15 - Prob. 15.53PCh. 15 - Prob. 15.54PCh. 15 - Prob. 15.55PCh. 15 - Prob. 15.56PCh. 15 - Prob. 15.57PCh. 15 - Prob. 15.58PCh. 15 - Prob. 15.59PCh. 15 - Prob. 15.60PCh. 15 - Prob. 15.61PCh. 15 - Prob. 15.62PCh. 15 - Prob. 15.63PCh. 15 - Prob. 15.64PCh. 15 - Prob. 15.65PCh. 15 - Prob. 15.66PCh. 15 - Prob. 15.67PCh. 15 - Prob. 15.68PCh. 15 - Prob. 15.69PCh. 15 - Prob. 15.70PCh. 15 - Prob. 15.71PCh. 15 - Prob. 15.72PCh. 15 - Prob. 15.73PCh. 15 - Prob. 15.74PCh. 15 - Prob. 15.75PCh. 15 - Prob. 15.76PCh. 15 - Prob. 15.79PCh. 15 - Prob. 15.80PCh. 15 - Prob. 15.81PCh. 15 - Prob. 15.82PCh. 15 - Prob. 15.83PCh. 15 - Prob. 15.84PCh. 15 - Prob. 15.85PCh. 15 - Prob. 15.88PCh. 15 - Prob. 15.89PCh. 15 - Prob. 15.90PCh. 15 - Prob. 15.91PCh. 15 - Prob. 15.94PCh. 15 - Prob. 15.95PCh. 15 - Prob. 15.96PCh. 15 - Prob. 15.97PCh. 15 - Prob. 15.98PCh. 15 - Prob. 15.101PCh. 15 - Prob. 15.102PCh. 15 - Prob. 15.103PCh. 15 - Prob. 15.104PCh. 15 - Prob. 15.105PCh. 15 - Prob. 15.106PCh. 15 - Prob. 15.107PCh. 15 - Prob. 15.109PCh. 15 - Prob. 15.110PCh. 15 - Prob. 15.111P
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON