The equilibrium constant for the given reaction has to be calculated. Concept Information: Acid ionization constant K a : Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent. The degree to which a weak acid ionizes depends on the concentration of the acid and the equilibrium constant for the ionization. The ionization of a weak acid HA can be given as follows, HA (aq) → H + (aq) +A - (aq) The equilibrium expression for the above reaction is given below. K a = [ H + ][A - ] [ HA] Where, K a is acid ionization constant, [ H + ] is concentration of hydrogen ion [ A - ] is concentration of acid anion [ HA] is concentration of the acid Autoionization of water: The equation of equilibrium for autoionization of water is, H 2 O → H + + OH - K w = [H + ][OH - ] The equilibrium expression for water at 25 o C is, [H + ][OH - ]= 1 × 10 -14 Taking negative logarithm on both sides, we get − log ( [H + ][OH - ])= -log(1 × 10 -14 ) ( − log [H + ])+(-log[OH - ])= 14 ) The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14. Therefore, K w = [H + ][OH - ] =1 × 10 -14 To Calculate: The equilibrium constant for the given reaction
The equilibrium constant for the given reaction has to be calculated. Concept Information: Acid ionization constant K a : Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent. The degree to which a weak acid ionizes depends on the concentration of the acid and the equilibrium constant for the ionization. The ionization of a weak acid HA can be given as follows, HA (aq) → H + (aq) +A - (aq) The equilibrium expression for the above reaction is given below. K a = [ H + ][A - ] [ HA] Where, K a is acid ionization constant, [ H + ] is concentration of hydrogen ion [ A - ] is concentration of acid anion [ HA] is concentration of the acid Autoionization of water: The equation of equilibrium for autoionization of water is, H 2 O → H + + OH - K w = [H + ][OH - ] The equilibrium expression for water at 25 o C is, [H + ][OH - ]= 1 × 10 -14 Taking negative logarithm on both sides, we get − log ( [H + ][OH - ])= -log(1 × 10 -14 ) ( − log [H + ])+(-log[OH - ])= 14 ) The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14. Therefore, K w = [H + ][OH - ] =1 × 10 -14 To Calculate: The equilibrium constant for the given reaction
Solution Summary: The author explains that the equilibrium constant for the given reaction has to be calculated. The degree to which a weak acid ionizes depends on the concentration of the acid
Correctly name this compound using the IUPAC naming system by sorting the
components into the correct order.
Br
IN
Ν
H
How is the radical intermediate for this structure formed? Can you please draw arrows from the first radical to the resonance form that would result in this product? I'm lost.
Part VI.
(a) calculate the λ max of the compound using woodward - Fieser rules.
(b) what types of electronic transitions are present in the compound?
(c) what are the prominent peaks in the IR spectrum of the compound?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell