
To find:
The concentration of carbonate

Answer to Problem 15.106QA
Solution:
The concentration of carbonate ions in the water sample is
Explanation of Solution
1) Concept:
We are asked to find concentrations of carbonate
In the first stage, after the addition of the titrant, the carbonate ions present in the sample are converted into bicarbonate ions at the first equivalence point.
The reaction continues until all the carbonate ions are has been converted into bicarbonate ions. This is the first equivalence point in the titration. In the second stage of titration, the bicarbonate ions formed in the first stage plus any bicarbonate ions present in the original sample react with the additional titrant, forming carbonic acid,
According to the stoichiometry of the reactions, it takes 1 mole of
2) Formula:
3) Given:
i) Volume of sample =
ii) Volume of
iii) Molarity of
iv) Volume of
v) The alkalinity of water is due to carbonate
4) Calculations:
Calculating concentrations of carbonate
Therefore, the concentration of carbonate is
These moles of carbonate are converted to an equal number of moles of bicarbonate at the first equivalence point. The solution now contains these moles plus the moles of bicarbonate already present in the spring water sample. These correspond to the titration from the first to the second equivalence point, i.e., to the addition of another 10.42 mL of the acid. The total bicarbonate moles are then calculated as
Of these,
The concentration of bicarbonate in the sample is then calculated as
Conclusion:
The volume required for the second equivalent point is three times that for the first equivalence point. This is consistent with the observed concentrations of carbonate and bicarbonate ions as the concentration of bicarbonate ions is three times that of the carbonate ions.
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry: An Atoms-Focused Approach
- What is the structure of the monomer?arrow_forward→ BINDERIYA GANBO... BINDERIYA GANBO. AP Biology Notes Gamino acid chart - G... 36:22 司 10 ☐ Mark for Review Q 1 Hide 80 8 2 =HA O=A¯ = H₂O Acid HIO HBrO HCIO Question 10 of 35 ^ Σ DELL □ 3 % Λ & 6 7 * ∞ 8 do 5 $ 4 # m 3 ° ( 9 Highlights & Notes AXC Sign out Carrow_forwardWhich representation(s) show polymer structures that are likely to result in rigid, hard materials and those that are likely to result in flexible, stretchable, soft materials?arrow_forward
- 3. Enter the molecular weight of the product obtained from the Williamson Ether Synthesis? OH OH & OH excess CH3l Ag₂Oarrow_forwardPlease answer 1, 2 and 3 on the endarrow_forwardIn the box below, specify which of the given compounds are very soluble in polar aprotic solvents. You may select more than one compound. Choose one or more: NaCl NH4Cl CH3CH2CH2CH2CH2CN CH3CH2OH hexan-2-one NaOH CH3SCH3arrow_forward
- On the following structure, select all of the atoms that could ACCEPT a hydrogen bond. Ignore possible complications of aromaticity. When selecting be sure to click on the center of the atom.arrow_forwardRank the compounds below from lowest to highest melting point.arrow_forward18 Question (1 point) Draw the line structure form of the given partially condensed structure in the box provided. :ÖH HC HC H2 ΙΩ Н2 CH2 CH3 CH3 partially condensed formarrow_forward
- someone else has already submitted the same question on here and it was the incorrect answer.arrow_forwardThe reaction: 2NO2(g) ⇌ N2O4(g) is an exothermic reaction, ΔH=-58.0 kJ/molrxn at 0°C the KP is 58.If the initial partial pressures of both NO2(g) and N2O4(g) are 2.00 atm:A) Is the reaction at equilibrium? If not, what is the value of Q? B) Which direction will the reaction go to reach equilibrium? C) Use an ICE table to find the equilibrium pressures.arrow_forwardThe dissociation of the weak acid, nitrous acid, HNO2, takes place according to the reaction: HNO2 (aq) ⇌ H+(aq) + NO2–(aq) K=7.2 X 10-4 When 1.00 mole of HNO2 is added to 1.00 L of water, the H+ concentration at equilibrium is 0.0265 M.A) Calculate the value of Q if 1.00 L of water is added? B) How will reaction shift if 1.00 L of water is added?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





