MindTap Engineering, 2 terms (12 months) Printed Access Card for Moaveni's Engineering Fundamentals, SI Edition, 5th
MindTap Engineering, 2 terms (12 months) Printed Access Card for Moaveni's Engineering Fundamentals, SI Edition, 5th
5th Edition
ISBN: 9781305110250
Author: MOAVENI, Saeed
Publisher: Cengage Learning
Question
Book Icon
Chapter 15, Problem 10P
To determine

Find the power requirements of air resistance as a function of air speed and temperature in kilowatts and horsepower.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given data:

The value of drag coefficient Cd is 0.4.

The width of car is 74.4 inches.

The height of car is 57.4 inches.

The air speed varies from the range of 15ms<V<35ms.

The temperature varies from the range of 0°C<T<45°C.

Formula used:

Express the drag coefficient by the equation,

Cd=Fd12ρV2A (1)

Here,

Fd is the drag force,

ρ is the air density,

V is the air speed,

A is the frontal area.

Express the relation for power consumption in order to overcome the air resistance,

P=FdV (2)

Calculate the area by multiplying the factor 0.85 with width and height.

Therefore, express the area as below.

A=0.85×width×height (3)

Express the formula to calculate the air density as below,

ρair=pRT (4)

Here,

p is the atmosphere pressure of air (101325Pa),

R is the ideal gas constant (287.05JkgK-1)

T is the temperature.

Calculation:

Rearrange equation (1) to find Fd.

Fd=12CdρV2A (5)

Substitute equation (4) in (5).

Fd=12RTCdpV2A (6)

Substitute equation (3) in (6).

Fd=0.852RTCdpV2×width×height=0.425RTCdpV2×width×height (7)

Substitute equation (7) in equation (2).

P=0.425RTCdpV2×width×height×V=0.425RTCdp×width×height×V3W=0.000425RTCdp×width×height×V3kW (8)

Summarize the steps to find the power consumption as a function of air speed and temperature using MATLAB as follows:

  • Input the given values.
  • Use equation (1) to find the power in watts.
  • Use the temperature value range from 0°C<T<45°C and air speed from 15ms<V<35ms to find the different values of power.
  • Divide the equation (1) by 1000 to find the power in kilowatts.
  • Find the power in horsepower using the relation 1horpower=1.341 kilowatts.
  • Print the values in the form of table.

In the M-file editor, type the code as follows and save the file named “air speed” as .m file and run the code.

C_d=0.4;

width=74.4*0.0254;            % convert inches into meter

height=57.4*0.0254;           % convert inches into meter

p=101325;

R=287.05;

V=15:5:35;

T=0:5:45;

for i=1:1:5

    for j=1:1:10

        P_kw(i,j)=(0.000425*C_d*p*width*height*V(i)^3)/(R*(T(j)+273));

        P_hp(i,j)=1.341*P_kw(i,j);

    end

end

table_kw=[V',P_kw];

table_hp=[V',P_hp];

fprintf('\n---------------------------------------------------------------------------------------------------------------\n');

fprintf('\t\t      \t\t\t\t\t\t\t\t\t\t\t\t\t\t Ambient temperature (C) \n');

fprintf('\t\tCar speed -------------------------------------------------------------------------------------------------\n');

fprintf('\t(m/s)\t\t0\t\t5\t\t\t10\t\t\t15\t\t20\t\t25\t\t30\t\t\t35\t\t40\t\t\t45\n');

fprintf('--------------------------------------------------------------------------------------------------------------------\n');

disp(table_kw);

fprintf('-----------------------------------------------------------------------------------------------------------------------------\n');

fprintf('\n---------------------------------------------------------------------------------------------------------------\n');

fprintf('\t\t      \t\t\t\t\t\t\t\t\t\t\t\t\t\t Ambient temperature (C) \n');

fprintf('\t\tCar speed --------------------------------------------------------------------------------------------------------\n');

fprintf('\t(m/s)\t\t0\t\t5\t\t\t10\t\t\t15\t\t20\t\t25\t\t30\t\t\t35\t\t40\t\t\t45\n');

fprintf('--------------------------------------------------------------------------------------------------------------------------\n');

disp(table_hp);

fprintf('-----------------------------------------------------------------------------------------------------------------------------\n');

In the command window of the MATLAB, the output will be displayed as follows:

MindTap Engineering, 2 terms (12 months) Printed Access Card for Moaveni's Engineering Fundamentals, SI Edition, 5th, Chapter 15, Problem 10P

Therefore, the power consumption as a function of air speed and temperature in terms of kilowatts and horsepower is calculated.

Conclusion:

Thus, the power consumption as a function of air speed and temperature in terms of kilowatts and horsepower is calculated using MATLAB.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Civil engineering quanti
Please answer the questions in the picture. Thank you for your help. For part B use the Second Picture.
Derive by deconvolution the six-hour unit hydrograph from the following data for a watershed having a drainage area of 216 km2 , assuming a constant rainfall abstraction rate and a constant baseflow of 20 m3 /s. Six-hour period 1 2 3 4 5 6 7 8 9 10 11 Rainfall (cm) 1.5 3.5 2.5 1.5 Streamflow (m3 /s) 26 71 174 226 173 99 49 33 26 22 21 Use the unit hydrograph developed to calculate the streamflow hydrographfrom a 12 hour-duration storm having 2 cm of rainfall excess in the first six hours and 3 cm inthe second six hours. Assume a constant baseflow rate of 30 m3/s.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning