
Concept explainers
(a)
To calculate: The period and frequency of the waves on string.
(a)

Answer to Problem 102P
The period
Explanation of Solution
Given:
Frequency =
Amplitude =
Linear mass density =
Tension =
Formula used:
Theperiod and frequency of the waves on string can be calculated as:
Where,
Calculation:
The frequency of the waves on the string is the similar as that of frequency of the tuning fork and their period is the reciprocal of the frequency.
The frequency of the wave given is:
The period of the wave on the wire is the reciprocal of their frequency:
Conclusion:
Thus, the period
(b)
To calculate: The speed of the wave.
(b)

Answer to Problem 102P
The speed of the wave
Explanation of Solution
Given:
Frequency =
Amplitude =
Linear mass density =
Tension =
Formula used:
For wave speed formula used is:
Where,
Calculation:
By using the tension and the linear density, wave speed can be calculated.
Relate the speed of the waves to the tension in string and linear density:
Conclusion:
Thus, the speed of the wave
(c)
To calculate: The wavelength and wave number.
(c)

Answer to Problem 102P
The wavelength
Explanation of Solution
Given:
Frequency =
Amplitude =
Linear mass density =
Tension =
Formula used:
Where,
Sound’s speed:
Frequency of wave:
The wavelength:
Calculation:
By using the frequency and the speed of the waves and the wave number The wavelength can be determined.
Relate the wavelength and wave no to the speed and frequency of the wave:
Where,
After substituting the values,
Therefore,
Now, evaluate the wave number using wave length:
Hence,
Conclusion:
Thus, the wavelength
(d)
To calculate: Suitable wave function for the wave on the string.
(d)

Answer to Problem 102P
The suitable wave function is
Explanation of Solution
Given:
Frequency =
Amplitude =
Linear mass density =
Tension =
Formula used:
For wave speed formula used is:
Where,
Calculation:
The general form of the wave function for waves on a string is
So, with the help of
Initially, find out the angular frequency of the waves:
Now, put
Conclusion:
Thus, the suitable wave function is
(e)
To calculate: max speed and acceleration point on the string.
(e)

Answer to Problem 102P
The max speed
Explanation of Solution
Given:
Frequency =
Amplitude =
Linear mass density =
Tension =
Formula used:
For max speed formula used is:
Where,
Calculation:
The max speed and acceleration ofa point on the string can be determined from the angular frequency and amplitude ofthe waves.
Relate the max speed of apoint on the string to the amplitude of the waves and tuning fork’s the angular frequency:
Now, expression for the max acceleration of string point in terms of the amplitude and angular frequency of the tuning fork is:
Put the values to get max acceleration:
Conclusion:
Thus, the max speed
(f)
To calculate: minimum average rate of energy supplied to fork.
(f)

Answer to Problem 102P
The minimum average rate of energy
Explanation of Solution
Given:
Frequency =
Amplitude =
Linear mass density =
Tension:
Formula used:
For minimum average rate of energyformula used is:
Where,
Calculation:
The expression for the minimum average power essential to keep the tuning fork oscillating at steady amplitude in terms of linear density of string, the amplitude of its vibrations and wave speed:
Where,
Now, substitute the values in the equation:
Conclusion:
Thus, the minimum average rate of energy
Want to see more full solutions like this?
Chapter 15 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





