Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
2nd Edition
ISBN: 9781337086431
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 15, Problem 102CP
Interpretation Introduction

Interpretation: The equilibrium concentrations of NH3 , Cu2+ , Cu(NH3)2+ , Cu(NH3)22+ , Cu(NH3)32+ and Cu(NH3)42+ in a solution prepared by mixing 500mL of 3MNH3 with 500mL of 2×103MCu(NO3)2 is to be calculated.

Concept introduction: The solubility product is the mathematical product of a substance’s dissolved ion concentration raised to its power of its stoichiometric coefficients. When sparingly soluble ionic compound releases ions in the solution, it gives relevant solubility product. The solvent is generally water.

Expert Solution & Answer
Check Mark

Answer to Problem 102CP

The concentration of NH3 is 1.50M_ .

The concentration of Cu2+ is 1.77×10-17M_ .

The concentration of Cu(NH3)2+ is 4.93×10-13M_ .

The concentration of Cu(NH3)22+ is 2.866×10-9M_ .

The concentration of Cu(NH3)32+ is 4.30×10-6M_ .

The concentration of Cu(NH3)42+ is 1×10-3M_ .

Explanation of Solution

Explanation

To determine: The equilibrium concentrations of NH3 , Cu2+ , Cu(NH3)2+ , Cu(NH3)22+ , Cu(NH3)32+ and Cu(NH3)42+ in a solution prepared by mixing 500mL of 3MNH3 with 500mL of 2×103MCu(NO3)2 .

The initial concentration of Cu2+ is 1×10-3M_ and the initial concentration of NH3 is 1.50M_ .

The concentration of Cu2+ is calculated by the formula,

[Cu2+]initial=(VolumeofCu(NO3)2solution)×(ConcentrationofCu(NO3)2solution)(VolumeofCu(NO3)2solution+VolumeofNH3solution)

Where,

  • [Cu2+]initial is the initial concentration of Cu2+ .

The volume of Cu(NO3)2 solution is 500mL .

The volume of NH3 solution is 500mL .

The concentration of Cu(NO3)2 solution is 2×103M .

Substitute the values of volume of solutions and concentration of Cu(NO3)2 solution in the above formula.

[Cu2+]initial=(500mL)×(2×103M)(500mL+500mL)=1×10-3M_

The concentration of NH3 is calculated by the formula,

[NH3]initial=(VolumeofNH3solution)×(ConcentrationofNH3solution)(VolumeofCu(NO3)2solution+VolumeofNH3solution)

Where,

  • [NH3]initial is the equilibrium concentration of NH3 .

The volume of Cu(NO3)2 solution is 500mL .

The volume of NH3 solution is 500mL .

The concentration of NH3 solution is 3M .

Substitute the values of volume of solutions and concentration of NH3 solution in the above formula.

[NH3]initial=(500mL)×(3M)(500mL+500mL)=1.50M_

The concentration of Cu(NH3)42+ is 1×10-3M_ .

Explanation

The given stepwise equilibria for the formation of complex ion is as follows,

Cu2+(aq)+NH3(aq)CuNH32+(aq)K1=1.86×104 (1)

CuNH32+(aq)+NH3(aq)Cu(NH3)22+(aq)K2=3.88×103 (2)

Cu(NH3)22+(aq)+NH3(aq)Cu(NH3)32+(aq)K3=1.00×103 (3)

Cu(NH3)32+(aq)+NH3(aq)Cu(NH3)42+(aq)K4=1.55×102 (4)

Since the equilibrium constants for every reaction is high and there is an excess of NH3 , this means that the reaction goes to completion and the net reaction in solution is,

Cu2+(aq)+4NH3(aq)Cu(NH3)42+(aq)

The concentration of the species in the solution is calculated by the table given below.

Cu2+(aq)+4NH3(aq)Cu(NH3)42+(aq)Beforereaction1×103M1.50M0Afterreaction01.50M4(1×103)M1.50M1×103M

The entire Cu2+ will form Cu(NH3)42+ because reaction goes to completion. Hence the

concentration of Cu(NH3)42+ is 1×10-3M_ .

The concentration of Cu(NH3)32+ is 4.30×10-6M_ .

The equilibrium constant for equation (4) is calculated by the formula,

K4=[Cu(NH3)42+][Cu(NH3)32+][NH3]

Where,

  • K4 is the equilibrium constant of equation (4).

Substitute the value of K4 and the concentration of Cu(NH3)42+ and NH3 in the above formula.

1.55×102=[1×103][Cu(NH3)32+][1.50][Cu(NH3)32+]=4.30×10-6M_

Therefore, the concentration of Cu(NH3)32+ is 4.30×10-6M_ .

The concentration of Cu(NH3)22+ is 2.866×10-9M_ .

The equilibrium constant for equation (3) is calculated by the formula,

K3=[Cu(NH3)32+][Cu(NH3)22+][NH3]

Where,

  • K3 is the equilibrium constant of equation (3).

Substitute the value of K3 and the concentration of Cu(NH3)32+ and NH3 in the above formula.

1×103=[4.30×106][Cu(NH3)22+][1.50][Cu(NH3)22+]=2.866×10-9M_

Therefore, the concentration of Cu(NH3)22+ is 2.866×10-9M_ .

The concentration of CuNH32+ is 4.93×10-13M_ .

The equilibrium constant for equation (2) is calculated by the formula,

K2=[Cu(NH3)22+][CuNH32+][NH3]

Where,

  • K2 is the equilibrium constant of equation (2).

Substitute the value of K2 and the concentration of Cu(NH3)22+ and NH3 in the above formula.

3.88×103=[2.87×109][CuNH32+][1.50][CuNH32+]=4.93×10-13M_

Therefore, the concentration of CuNH32+ is 4.93×10-13M_ .

The concentration of Cu2+ is 1.77×10-17M_ .

The equilibrium constant for equation (1) is calculated by the formula,

K1=[CuNH32+][Cu2+][NH3]

Where,

  • K1 is the equilibrium constant of equation (1).

Substitute the value of K2 and the concentration of Cu(NH3)22+ and NH3 in the above formula.

1.86×104=[4.93×1013][Cu2+][1.50][Cu2+]=1.77×10-17M_

Therefore, the concentration of Cu2+ is 1.77×10-17M_ .

Conclusion

Conclusion

The concentration of NH3 is 1.50M_ .

The concentration of Cu2+ is 1.77×10-17M_ .

The concentration of Cu(NH3)2+ is 4.93×10-13M_ .

The concentration of Cu(NH3)22+ is 2.866×10-9M_ .

The concentration of Cu(NH3)32+ is 4.30×10-6M_ .

The concentration of Cu(NH3)42+ is 1×10-3M_ .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A first order reaction is 46.0% complete at the end of 59.0 minutes. What is the value of k? What is the half-life for this reaction? HOW DO WE GET THERE? The integrated rate law will be used to determine the value of k. In [A] [A]。 = = -kt What is the value of [A] [A]。 when the reaction is 46.0% complete?
3. Provide the missing compounds or reagents. 1. H,NNH КОН 4 EN MN. 1. HBUCK = 8 хно Panely prowseful kanti-chuprccant fad, winddively, can lead to the crading of deduc din-willed, tica, The that chemooices in redimi Грин. " like (for alongan Ridovi MN نيا . 2. Cl -BuO 1. NUH 2.A A -BuOK THE CF,00,H Ex 5)
2. Write a complete mechanism for the reaction shown below. NaOCH LOCH₁ O₂N NO2 CH₂OH, 20 °C O₂N NO2

Chapter 15 Solutions

Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card

Ch. 15 - Prob. 1ALQCh. 15 - Prob. 2ALQCh. 15 - Prob. 3ALQCh. 15 - A friend tells you: The constant Ksp of a salt is...Ch. 15 - Prob. 5ALQCh. 15 - Prob. 6ALQCh. 15 - Prob. 7ALQCh. 15 - For which of the following is the Ksp value of the...Ch. 15 - Ag2S(s) has a larger molar solubility than CuS...Ch. 15 - Prob. 10QCh. 15 - Prob. 11QCh. 15 - When Na3PO4(aq) is added to a solution containing...Ch. 15 - The common ion effect for ionic solids (salts) is...Ch. 15 - Prob. 14QCh. 15 - Prob. 15QCh. 15 - The stepwise formation constants for a complex ion...Ch. 15 - Prob. 17QCh. 15 - Prob. 18QCh. 15 - Write balanced equations for the dissolution...Ch. 15 - Write balanced equations for the dissolution...Ch. 15 - Prob. 21ECh. 15 - Use the following data to calculate the Ksp value...Ch. 15 - Approximately 0.14 g nickel(II) hydroxide,...Ch. 15 - The solubility of the ionic compound M2X3, having...Ch. 15 - Prob. 25ECh. 15 - Prob. 26ECh. 15 - Calculate the solubility of each of the following...Ch. 15 - Prob. 28ECh. 15 - Cream of tartar, a common ingredient in cooking,...Ch. 15 - Prob. 30ECh. 15 - Prob. 31ECh. 15 - Calculate the molar solubility of Cd(OH)2, Ksp =...Ch. 15 - Calculate the molar solubility of Al(OH)3, Ksp = 2...Ch. 15 - Calculate the molar solubility of Co(OH)3, Ksp =...Ch. 15 - Prob. 35ECh. 15 - For each of the following pairs of solids,...Ch. 15 - Calculate the solubility (in moles per liter) of...Ch. 15 - Calculate the solubility of Co(OH)2(s) (Ksp = 2.5 ...Ch. 15 - The Ksp for silver sulfate (Ag2SO4) is 1.2 105....Ch. 15 - Prob. 40ECh. 15 - Prob. 41ECh. 15 - Prob. 42ECh. 15 - Prob. 43ECh. 15 - The solubility of Pb(IO3)(s) in a 0.10-M KIO3...Ch. 15 - Prob. 45ECh. 15 - For which salt in each of the following groups...Ch. 15 - What mass of ZnS (Ksp = 2.5 1022) will dissolve...Ch. 15 - The concentration of Mg2+ in seawater is 0.052 M....Ch. 15 - Will a precipitate form when 100.0 mL of 4.0 104...Ch. 15 - A solution contains 1.0 105 M Ag+ and 2.0 106 M...Ch. 15 - A solution is prepared by mixing 100.0 mL of 1.0 ...Ch. 15 - Prob. 52ECh. 15 - Calculate the final concentrations of K+(aq),...Ch. 15 - Prob. 54ECh. 15 - A 50.0-mL sample of 0.00200 M AgNO3 is added to...Ch. 15 - Prob. 56ECh. 15 - A solution contains 1.0 105 M Na3PO4. What is the...Ch. 15 - The Ksp of Al(OH)3 is 2 1032. At what pH will a...Ch. 15 - A solution is 1 104 M in NaF, Na2S, and Na3PO4....Ch. 15 - A solution contains 0.25 M Ni(NO3)2 and 0.25 M...Ch. 15 - Write equations for the stepwise formation of each...Ch. 15 - Write equations for the stepwise formation of each...Ch. 15 - In the presence of CN, Fe3+ forms the complex ion...Ch. 15 - In the presence of NH3, Cu2+ forms the complex ion...Ch. 15 - Prob. 65ECh. 15 - Prob. 66ECh. 15 - The overall formation constant for HgI42 is 1.0 ...Ch. 15 - Prob. 68ECh. 15 - A solution is formed by mixing 50.0 mL of 10.0 M...Ch. 15 - A solution is prepared by mixing 100.0 mL of 1.0 ...Ch. 15 - a. Calculate the molar solubility of AgI in pure...Ch. 15 - Solutions of sodium thiosulfate are used to...Ch. 15 - Kf for the complex ion Ag(NH3)2+ is 1.7 107. Ksp...Ch. 15 - Prob. 74ECh. 15 - Prob. 75ECh. 15 - The solubility of copper(II) hydroxide in water...Ch. 15 - A solution contains 0.018 mole each of I, Br, and...Ch. 15 - Prob. 78AECh. 15 - Tooth enamel is composed of the mineral...Ch. 15 - Prob. 80AECh. 15 - What mass of Ca(NO3)2 must be added to 1.0 L of a...Ch. 15 - Calculate the mass of manganese hydroxide present...Ch. 15 - Prob. 83AECh. 15 - The active ingredient of Pepto-Bismol is the...Ch. 15 - Prob. 85AECh. 15 - The equilibrium constant for the following...Ch. 15 - Calculate the concentration of Pb2+ in each of the...Ch. 15 - Will a precipitate of Cd(OH)2 form if 1.0 mL of...Ch. 15 - Prob. 89AECh. 15 - Describe how you could separate the ions in each...Ch. 15 - Prob. 91AECh. 15 - Prob. 92AECh. 15 - Prob. 93CWPCh. 15 - Prob. 94CWPCh. 15 - Prob. 95CWPCh. 15 - The solubility of Pb(IO3)2(s) in a 7.2 102-M KIO3...Ch. 15 - A 50.0-mL sample of 0.0413 M AgNO3(aq) is added to...Ch. 15 - Prob. 98CWPCh. 15 - Prob. 99CPCh. 15 - Consider a solution made by mixing 500.0 mL of 4.0...Ch. 15 - a. Calculate the molar solubility of AgBr in pure...Ch. 15 - Prob. 102CPCh. 15 - Prob. 103CPCh. 15 - Calcium oxalate (CaC2O4) is relatively insoluble...Ch. 15 - What is the maximum possible concentration of Ni2+...Ch. 15 - A mixture contains 1.0 103 M Cu2+ and 1.0 103 M...Ch. 15 - Sodium tripolyphosphate (Na5P3O10) is used in many...Ch. 15 - You add an excess of solid MX in 250g water. You...Ch. 15 - a. Calculate the molar solubility of SrF2 in...Ch. 15 - Prob. 110IPCh. 15 - Prob. 111IPCh. 15 - Prob. 112IPCh. 15 - Aluminum ions react with the hydroxide ion to form...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Reactions
    Chemistry
    ISBN:9781305079373
    Author:William L. Masterton, Cecile N. Hurley
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY