
EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220102809444
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 14.7, Problem 51P
To determine
How does humidity affect human comfort.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(read image) (answer: (a) αBeam = 0.0833 rad/sec2 CCW (b) aC = 0.625 ft/sec2 up, (c) d = 1.5 ft)
Design a counter balance circuit of a vertical cylinder
using counter balance valve. Assume the external load is
equal to 61.
(read image)
Chapter 14 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 8PCh. 14.7 - Consider a tank that contains moist air at 3 atm...Ch. 14.7 - Why are the chilled water lines always wrapped...
Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 12PCh. 14.7 - Prob. 13PCh. 14.7 - 14–13 A room contains air at 20°C and 98 kPa at a...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Prob. 17PCh. 14.7 - Prob. 18PCh. 14.7 - Prob. 19PCh. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Prob. 23PCh. 14.7 - Prob. 24PCh. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - Prob. 28PCh. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Prob. 37PCh. 14.7 - Prob. 39PCh. 14.7 - Prob. 41PCh. 14.7 - Prob. 42PCh. 14.7 - Prob. 43PCh. 14.7 - Prob. 44PCh. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - Prob. 47PCh. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 55PCh. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 63PCh. 14.7 - Prob. 64PCh. 14.7 - Prob. 65PCh. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 68PCh. 14.7 - Prob. 69PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Prob. 72PCh. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 74PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Prob. 76PCh. 14.7 - Prob. 77PCh. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - Prob. 81PCh. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 88PCh. 14.7 - Prob. 89PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 93PCh. 14.7 - Prob. 94PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Prob. 98PCh. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - Prob. 108PCh. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Prob. 112PCh. 14.7 - Prob. 113RPCh. 14.7 - Prob. 114RPCh. 14.7 - Prob. 115RPCh. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - 14–121 The relative humidity inside dacha of Prob....Ch. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - 14–126E Air at 15 psia, 60°F, and 70 percent...Ch. 14.7 - Prob. 127RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 129RPCh. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - 14–131 Air enters an air-conditioning system that...Ch. 14.7 - Prob. 132RPCh. 14.7 - Prob. 133RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 138RPCh. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - Prob. 143FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...Ch. 14.7 - Prob. 148FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- What is the primary temperature element? PyrometerB. Filled thermal systemC. ThermocoupleD. Bi-metallic elementarrow_forwardFor control loops 1 and 2. What is the control strategy?(I found this question on the internet and was wondering what the answer was out of interest) A.Cascade.B. Ratio.C. Feed forward.D. Feedbackarrow_forwardIn an SIS, which diagram indicates a 2 out of 2 (2oo2) polling architecture? (I found this sample question on the internet and was wondering what the correct answer is.) A.AB. BC. CD. Darrow_forward
- (read image) (answer given)arrow_forward(Read Image) (Answer: vC = 0.965 ft/sec right)arrow_forwardA gas mixture with a molar analysis of 40% CH4 (methane) and 60% air enters a control volume operating at steady state at location 1 with a mass flow rate of 5 kg/min, as shown in the figure below. Air enters as a separate stream at 2 and dilutes the mixture. A single stream exits with a mole fraction of methane of 5%. Assume air has a molar analysis of 21% O2 and 79% N2. (CH4, Air) m₁ = = 5 kg/min Air (21% O2, 79% N₂) 3 + (5% CH4, 95% Air)arrow_forward
- A. Calculate the cutting time if the length of cut is 24 in., the feed rate is 0.030 ipr, and the cutting speed is 80 fpm. The allowance is 0.5 in and the diameter is 8 in. B. Calculate the metal removal rate for machining at speed of 80 fpm, feed of 0.030 ipr, at a depth of 0.625 in. Use data from the previous problem.arrow_forwardConsider 0.65 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 290 K. Determine: (a) the volume of each tank, in m³. (b) the final pressure, in bar. (c) the magnitude of the heat transfer to or from the gases during the process, in kJ. (d) the entropy change of each gas and of the overall system, in kJ/K.arrow_forwardA gas mixture with a molar analysis of 40% CH4 (methane) and 60% air enters a control volume operating at steady state at location 1 with a mass flow rate of 5 kg/min, as shown in the figure below. Air enters as a separate stream at 2 and dilutes the mixture. A single stream exits with a mole fraction of methane of 5%. Assume air has a molar analysis of 21% O2 and 79% N2. (CH4, Air) m₁ = = 5 kg/min Air (21% O2, 79% N₂) 3 + (5% CH4, 95% Air)arrow_forward
- A gas mixture with a molar analysis of 40% CH4 (methane) and 60% air enters a control volume operating at steady state at location 1 with a mass flow rate of 5 kg/min, as shown in the figure below. Air enters as a separate stream at 2 and dilutes the mixture. A single stream exits with a mole fraction of methane of 5%. Assume air has a molar analysis of 21% O2 and 79% N2. (CH4, Air) m₁ = = 5 kg/min Air (21% O2, 79% N₂) 3 + (5% CH4, 95% Air)arrow_forwardArgon (Ar), at T₁ = 350 K, 1 bar with a mass flow rate of m₁ 3 kg/s enters the insulated mixing chamber shown in the figure below and mixes with carbon dioxide (CO2) entering as a separate stream at 575 K, 1 bar with a mass flow rate of 0.5 kg/s. The mixture exits at 1 bar. Assume ideal gas behavior with k = 1.67 for Ar and k = 1.25 for CO2. Argon (Ar) P₁ = 1 bar mT For steady-state operation, determine: (a) the molar analysis of the exiting mixture. (b) the temperature of the exiting mixture, in K. (c) the rate of entropy production, in kW/K. Insulation 3 + Mixture exiting P3 = 1 bar 2+ Carbon dioxide (CO2) T₂ = 575 K P2 = 1 bar m2 = 0.5 kg/sarrow_forwardConsider 0.65 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 290 K. Determine: (a) the volume of each tank, in m³. (b) the final pressure, in bar. (c) the magnitude of the heat transfer to or from the gases during the process, in kJ. (d) the entropy change of each gas and of the overall system, in kJ/K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY