Think About It The center of mass of a solid of constant density is shown in the figure. In Exercises 43-46, make a conjecture about how the center of mass ( x ¯ , y ¯ , z ¯ ) will change for the nonconstant density ρ ( x , y , z ) . Explain. (Make your conjecture without performing any calculations.) ρ ( x , y , z ) = k z
Think About It The center of mass of a solid of constant density is shown in the figure. In Exercises 43-46, make a conjecture about how the center of mass ( x ¯ , y ¯ , z ¯ ) will change for the nonconstant density ρ ( x , y , z ) . Explain. (Make your conjecture without performing any calculations.) ρ ( x , y , z ) = k z
Solution Summary: The author explains that the center of mass of a solid of constant density is (x,y,z)=kz.
Think About It The center of mass of a solid of constant density is shown in the figure. In Exercises 43-46, make a conjecture about how the center of mass
(
x
¯
,
y
¯
,
z
¯
)
will change for the nonconstant density
ρ
(
x
,
y
,
z
)
. Explain. (Make your conjecture without performing any calculations.)
How would i solve this. More info is that b =1 but it might be better to solve this before making the substitution
Let m(t) be a continuous function with a domain of all real numbers. The table below shows some of the values of m(t) .
Assume the characteristics of this function are represented in the table.
t
-3 -2 8 11
12
m(t) -7 6
3
-9
0
(a) The point (-3, -7) is on the graph of m(t). Find the corresponding point on the graph of the transformation y = -m(t) + 17.
(b) The point (8, 3) is on the graph of m(t). Find the corresponding point on the graph of the transformation y =
-m (−t) .
24
(c) Find f(12), if we know that f(t) = |m (t − 1)|
f(12) =
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY