Concept explainers
(a.1)
Interpretation:
The least and most shielded proton or set of protons in the given compounds has to be determined.
Concept introduction:
Depending upon the electron density around the proton the chemical shift values of the proton varies relative to the reference signal.
The more the shielded proton less will be its chemical shift value and the corresponding signal will be produced at the right-hand side or lower frequency region.
The more the deshielded or less shielded proton more will be its chemical shift value and the corresponding signal will be produced at the left-hand side or higher frequency region.
Proton or set of proton attached near to the more electronegative or electron withdrawing atoms such as F, O, N is more deshielded or less shielded and vice versa.
(a.2)
Interpretation:
To determine the least and most shielded proton or set of protons in the given compounds.
Concept introduction:
Depending upon the electron density around the proton the chemical shift values of the proton varies relative to the reference signal.
The more the shielded proton less will be its chemical shift value and the corresponding signal will be produced at the right-hand side or lower frequency region.
The more the deshielded or less shielded proton more will be its chemical shift value and the corresponding signal will be produced at the left-hand side or higher frequency region.
Proton or set of proton attached near to the more electronegative or electron withdrawing atoms such as F, O, N is more deshielded or less shielded and vice versa.
(a.3)
Interpretation:
To determine the least and most shielded proton or set of protons in the given compounds.
Concept introduction:
Depending upon the electron density around the proton the chemical shift values of the proton varies relative to the reference signal.
The more the shielded proton less will be its chemical shift value and the corresponding signal will be produced at the right-hand side or lower frequency region.
The more the deshielded or less shielded proton more will be its chemical shift value and the corresponding signal will be produced at the left-hand side or higher frequency region.
Proton or set of proton attached near to the more electronegative or electron withdrawing atoms such as F, O, N is more deshielded or less shielded and vice versa.
(b.1)
Interpretation:
To determine the least and most shielded proton or set of protons in the given compounds.
Concept introduction:
Depending upon the electron density around the proton the chemical shift values of the proton varies relative to the reference signal.
The more the shielded proton less will be its chemical shift value and the corresponding signal will be produced at the right-hand side or lower frequency region.
The more the deshielded or less shielded proton more will be its chemical shift value and the corresponding signal will be produced at the left-hand side or higher frequency region.
Proton or set of proton attached near to the more electronegative or electron withdrawing atoms such as F, O, N is more deshielded or less shielded and vice versa.
(b.2)
Interpretation:
To determine the least and most shielded proton or set of protons in the given compounds.
Concept introduction:
Depending upon the electron density around the proton the chemical shift values of the proton varies relative to the reference signal.
The more the shielded proton less will be its chemical shift value and the corresponding signal will be produced at the right-hand side or lower frequency region.
The more the deshielded or less shielded proton more will be its chemical shift value and the corresponding signal will be produced at the left-hand side or higher frequency region.
Proton or set of proton attached near to the more electronegative or electron withdrawing atoms such as F, O, N is more deshielded or less shielded and vice versa.
(c.3)
Interpretation:
To determine the least and most shielded proton or set of protons in the given compounds.
Concept introduction:
Depending upon the electron density around the proton the chemical shift values of the proton varies relative to the reference signal.
The more the shielded proton less will be its chemical shift value and the corresponding signal will be produced at the right-hand side or lower frequency region.
The more the deshielded or less shielded proton more will be its chemical shift value and the corresponding signal will be produced at the left-hand side or higher frequency region.
Proton or set of proton attached near to the more electronegative or electron withdrawing atoms such as F, O, N is more deshielded or less shielded and vice versa.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Organic Chemistry; Organic Chemistry Study Guide A Format: Kit/package/shrinkwrap
- Pleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forwardThe Ksp for lead iodide ( Pbl₂) is 1.4 × 10-8. Calculate the solubility of lead iodide in each of the following. a. water Solubility = mol/L b. 0.17 M Pb(NO3)2 Solubility = c. 0.017 M NaI mol/L Solubility = mol/Larrow_forwardPleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forward
- Macroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks ColeOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning