Concept explainers
You are shipwrecked and floating in the middle of the ocean on a raft. Your cargo on the raft includes a treasure chest full of gold that you found before your ship sank, and the raft is just barely afloat. To keep you floating as high as possible in the water, should you (a) leave the treasure chest on top of the raft, (b) secure the treasure chest to the underside of the raft, or (c) hang the treasure chest in the water with a rope attached to the raft? (Assume throwing the treasure chest overboard is not an option you wish to consider.)
Trending nowThis is a popular solution!
Chapter 14 Solutions
Physics for Scientists and Engineers
Additional Science Textbook Solutions
Essential Cosmic Perspective
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
Physics (5th Edition)
University Physics Volume 3
Conceptual Integrated Science
Conceptual Physical Science Explorations
- (a) A wry powerful vacuum cleaner has a hose 2.86 cm in diameter. With the end of the hose placed perpendicularly on the flat face of a brick, what is the weight of the heaviest brick that the cleaner can lift? (b) What If? An octopus uses one sucker of diameter 2.86 cm on each of the two shells of a clam in an attempt to pull the shells apart. Find the greatest force the octopus can exert on a clamshell in salt water 32.3 m deep.arrow_forwardA beaker of mass mb containing oil of mass mo and density o rests on a scale. A block of iron of mass mFe suspended from a spring scale is completely submerged in the oil as shown in Figure P15.63. Determine the equilibrium readings of both scales. Figure P15.63 Problems 63 and 64.arrow_forwardThe gravitational force exerted on a solid object is 5.00 N. When the object is suspended from a spring scale and submerged in water, the scale reads 3.50 N (Fig. P15.24). Find the density of the object. Figure P15.24 Problems 24 and 25.arrow_forward
- In Chapter 1.6 in the discussion of the hydrometer, it is stated: The higher the bulb floats, the greater the density of the liquid. Why is this? (See Fig. 1.14.)arrow_forwardWhen an object is immersed in a liquid at rest, why is the net force on the object in the horizontal direction equal to zero?arrow_forwardA wooden block floats in water, and a steel object is attached to the bottom of the block by a string as in Figure OQ15.1. If the block remains floating, which of the following statements are valid? (Choose all correct statements.) (a) The buoyant force on the steel object is equal to its weight. (b) The buoyant force on the block is equal to its weight. (c) The tension in the string is equal to the weight of the steel object. (d) The tension in the string is less than the weight of the steel object. (e) The buoyant force on the block is equal to the volume of water it displaces.arrow_forward
- Consider a spherical bacterium, with radius 1.85 um, falling in water at 20° C. ▷ A Find the terminal speed of the spherical bacterium in meters per second, ignoring the buoyant force on the bacterium and assuming Stokes' law for the viscous force. You will first need to note that the drag force is equal to the weight at terminal velocity. Take the density of the bacterium to be 1.2 x 10³ kg/m³. The viscosity of water at 20 °C is 1.002 x 10-3 kg/m-s and the density is 998 kg/m³. y = 7 8 HOME sin() cotan() cos() asin() atan() acotan tan() T C acos() E 4 6 sinh() 1 2 3 cotanh() + 0 cosh() tanh() Ⓒ Degrees Radians END CLEAR VO BACKSPACE Submit Hint Feedback I give up!arrow_forwardOn a distant planet the acceleration due to gravity is less than it is on Earth. Would you float more easily in water on this planet than on Earth? Justify your answer.arrow_forwardAn inflated spherical beach ball with a radius of 0.3600m and an average density of 10.65 kg/m^3 is being held underwater in a pool by Janelle. The density of the water in the pool is 1000.0 kg/m^3. When Janelle releases the ball, it begins to rise to the surface. If the drag coefficient of the ball in the water is 0.530 and the constant upward force on the ball is 1917 N, what will be the terminal speed of the ball as it rises? Ignore the effects of gravity on the ball ________m/sarrow_forward
- Consider a spherical bacterium, with radius 0.95 μm , falling in water at 20° C. Find the terminal speed of the spherical bacterium in meters per second, ignoring the buoyant force on the bacterium and assuming Stokes' law for the viscous force. You will first need to note that the drag force is equal to the weight at terminal velocity. Take the density of the bacterium to be 1.45 × 103 kg/m3. The viscosity of water at 20 °C is 1.002 × 10-3 kg/m·s and the density is 998 kg/m3.arrow_forwardAn object displaces 3 liters of water and weights 4 kg. Does the object floats on water? (water density = 1 g/cm3 = 1 kg/liter)arrow_forwardAn object displaces 3 liters of water and weights 4 kg. Does the object floats on water? (water density = 1 g/cm3 = 1 kg/liter) No Yesarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College