Three-dimensional motion Consider the motion of the following objects. Assume the x-axis points east, the y-axis points north, the positive z-axis is vertical and opposite g, the ground is horizontal, and only the gravitational force acts on the object unless otherwise stated. a. Find the velocity and position vectors , for t ≥ 0. b. Make a sketch of the trajectory. c. Determine the time of flight and range of the object. d. Determine the maximum height of the object. 48. A golf ball is hit east down a fairway with an initial velocity of 〈50, 0, 30〉 m/s. A crosswind blowing to the south produces an acceleration of the ball of −0.8 m/s 2 .
Three-dimensional motion Consider the motion of the following objects. Assume the x-axis points east, the y-axis points north, the positive z-axis is vertical and opposite g, the ground is horizontal, and only the gravitational force acts on the object unless otherwise stated. a. Find the velocity and position vectors , for t ≥ 0. b. Make a sketch of the trajectory. c. Determine the time of flight and range of the object. d. Determine the maximum height of the object. 48. A golf ball is hit east down a fairway with an initial velocity of 〈50, 0, 30〉 m/s. A crosswind blowing to the south produces an acceleration of the ball of −0.8 m/s 2 .
Three-dimensional motionConsider the motion of the following objects. Assume the x-axis points east, the y-axis points north, the positive z-axis is vertical and opposite g, the ground is horizontal, and only the gravitational force acts on the object unless otherwise stated.
a.Find the velocity and position vectors, for t ≥ 0.
b.Make a sketch of the trajectory.
c.Determine the time of flight and range of the object.
d.Determine the maximum height of the object.
48. A golf ball is hit east down a fairway with an initial velocity of 〈50, 0, 30〉 m/s. A crosswind blowing to the south produces an acceleration of the ball of −0.8 m/s2.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
1. For each of the following, find the critical numbers of f, the intervals on which f is increasing or decreasing, and the relative
maximum and minimum values of f.
(a) f(x) = x² - 2x²+3
(b) f(x) = (x+1)5-5x-2
(c) f(x) =
x2
x-9
2. For each of the following, find the intervals on which f is concave upward or downward and the inflection points of f.
(a) f(x) = x - 2x²+3
(b) g(x) = x³- x
(c) f(x)=x-6x3 + x-8
3. Find the relative maximum and minimum values of the following functions by using the Second Derivative Test.
(a) f(x)=1+3x² - 2x3
(b) g(x) = 2x3 + 3x² - 12x-4
Find the
Soultion to the following dy
differential equation using Fourier in
transforms:
=
, хуо, ухо
according to the terms:
lim u(x,y) = 0
x18
lim 4x (x,y) = 0
x14
2
u (x, 0) =
=\u(o,y) =
-y
لو
Chapter 14 Solutions
Calculus: Early Transcendentals, Books A La Carte Edition (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.