BEGINNING+INTERM.ALG.(LL) >CUSTOM PKG.<
6th Edition
ISBN: 9781266148941
Author: Miller
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Question
Chapter 14.1, Problem 35PE
To determine
To calculate: The first three terms in the expansion of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Scientific Notation. In Exercises 9–12, the given expressions are designed to yield results expressed in a form of scientific notation. For example, the calculator-displayed result of 1.23E5 can be expressed as 123,000, and the result of 1.23E-4 can be expressed as 0.000123. Perform the indicated operation and express the result as an ordinary number that is not in scientific notation.
614
In Exercises 102–103, perform the indicated operations. Assume
that exponents represent whole numbers.
102. (x2n – 3x" + 5) + (4x2" – 3x" – 4) – (2x2 – 5x" – 3)
103. (y3n – 7y2n + 3) – (-3y3n – 2y2" – 1) + (6y3n – yn + 1)
104. From what polynomial must 4x? + 2x – 3 be subtracted to
obtain 5x? – 5x + 8?
In Exercises 9–12, the given expressions are designed to yield results expressed in a form of scientific notation. For example, the calculator-displayed result of 1.23E5 can be expressed as 123,000, and the result of 1.23E-4 can be expressed as 0.000123. Perform the indicated operation and express the result as an ordinary number that is not in scientific notation.
0.48
Chapter 14 Solutions
BEGINNING+INTERM.ALG.(LL) >CUSTOM PKG.<
Ch. 14.1 - Prob. 1SPCh. 14.1 - Prob. 2SPCh. 14.1 - Evaluate the expressions.
3. 1!
Ch. 14.1 - Prob. 4SPCh. 14.1 - Prob. 5SPCh. 14.1 - Prob. 6SPCh. 14.1 - Write out the first three terms of ( x + y ) 5 .Ch. 14.1 - 8. Use the binomial theorem to expand .
Ch. 14.1 - Use the binomial theorem to expand ( 2 a − 3 b 2 )...Ch. 14.1 - Find the fourth term of ( x + y ) 8 .
Ch. 14.1 - 11. Find the fifth term of .
Ch. 14.1 - a. The expanded form of ( x + b ) 2 =...Ch. 14.1 - For Exercises 2–7, expand the binomials. Use...Ch. 14.1 - For Exercises 2–7, expand the binomials. Use...Ch. 14.1 - For Exercises 2–7, expand the binomials. Use...Ch. 14.1 - For Exercises 2–7, expand the binomials. Use...Ch. 14.1 - For Exercises 2–7, expand the binomials. Use...Ch. 14.1 - For Exercises 2–7, expand the binomials. Use...Ch. 14.1 - For Exercises 8–13, rewrite each binomial of the...Ch. 14.1 - For Exercises 8–13, rewrite each binomial of the...Ch. 14.1 - For Exercises 8–13, rewrite each binomial of the...Ch. 14.1 - For Exercises 8–13, rewrite each binomial of the...Ch. 14.1 - For Exercises 8–13, rewrite each binomial of the...Ch. 14.1 - For Exercises 8–13, rewrite each binomial of the...Ch. 14.1 - For a > 0 and b > 0 , what happens to the signs of...Ch. 14.1 - For Exercises 15–18, evaluate the expression. (See...Ch. 14.1 - For Exercises 15–18, evaluate the expression. (See...Ch. 14.1 - For Exercises 15–18, evaluate the expression. (See...Ch. 14.1 - For Exercises 15–18, evaluate the expression. (See...Ch. 14.1 - True or false: 0 ! ≠ 1 !Ch. 14.1 - True or false: n! is defined for negative...Ch. 14.1 - True or false: n ! = n for n = 1 and 2 .Ch. 14.1 -
22. Show that !
Ch. 14.1 - Show that 6 ! = 6 ⋅ 5 !Ch. 14.1 - Show that 8 ! = 8 ⋅ 7 !Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - For Exercises 25–32, evaluate the expression. (See...Ch. 14.1 - Prob. 33PECh. 14.1 - Prob. 34PECh. 14.1 - Prob. 35PECh. 14.1 - For Exercises 33–36, find the first three terms of...Ch. 14.1 - Prob. 37PECh. 14.1 - Prob. 38PECh. 14.1 - Prob. 39PECh. 14.1 - Prob. 40PECh. 14.1 - For Exercises 39–50, use the binomial theorem to...Ch. 14.1 - Prob. 42PECh. 14.1 - Prob. 43PECh. 14.1 - Prob. 44PECh. 14.1 - Prob. 45PECh. 14.1 - For Exercises 39–50, use the binomial theorem to...Ch. 14.1 - Prob. 47PECh. 14.1 - For Exercises 39–50, use the binomial theorem to...Ch. 14.1 - Prob. 49PECh. 14.1 - Prob. 50PECh. 14.1 - Prob. 51PECh. 14.1 - Prob. 52PECh. 14.1 - Prob. 53PECh. 14.1 - Prob. 54PECh. 14.1 - Prob. 55PECh. 14.1 - For Exercises 51–56, find the indicated term of...Ch. 14.2 - Prob. 1SPCh. 14.2 - Prob. 2SPCh. 14.2 - Prob. 3SPCh. 14.2 - Prob. 4SPCh. 14.2 - Prob. 5SPCh. 14.2 - Prob. 6SPCh. 14.2 - Prob. 7SPCh. 14.2 - Prob. 8SPCh. 14.2 - Prob. 9SPCh. 14.2 - Prob. 10SPCh. 14.2 - Prob. 11SPCh. 14.2 - Prob. 12SPCh. 14.2 - Prob. 1PECh. 14.2 - Prob. 2PECh. 14.2 - Prob. 3PECh. 14.2 - Prob. 4PECh. 14.2 - Prob. 5PECh. 14.2 - Prob. 6PECh. 14.2 - Prob. 7PECh. 14.2 - Prob. 8PECh. 14.2 - Prob. 9PECh. 14.2 - Prob. 10PECh. 14.2 - Prob. 11PECh. 14.2 - Prob. 12PECh. 14.2 - Prob. 13PECh. 14.2 - Prob. 14PECh. 14.2 - Prob. 15PECh. 14.2 - Prob. 16PECh. 14.2 - Prob. 17PECh. 14.2 - Prob. 18PECh. 14.2 - Prob. 19PECh. 14.2 - Prob. 20PECh. 14.2 - Prob. 21PECh. 14.2 - Prob. 22PECh. 14.2 - Prob. 23PECh. 14.2 - Prob. 24PECh. 14.2 - Prob. 25PECh. 14.2 - Prob. 26PECh. 14.2 - Prob. 27PECh. 14.2 - Prob. 28PECh. 14.2 - Prob. 29PECh. 14.2 - For Exercises 21–32, find a formula for the nth...Ch. 14.2 - Prob. 31PECh. 14.2 - Prob. 32PECh. 14.2 - Edmond borrowed $500. To pay off the loan, he...Ch. 14.2 - Prob. 34PECh. 14.2 - Prob. 35PECh. 14.2 - Prob. 36PECh. 14.2 - Prob. 37PECh. 14.2 - Prob. 38PECh. 14.2 - Prob. 39PECh. 14.2 - Prob. 40PECh. 14.2 - Prob. 41PECh. 14.2 - Prob. 42PECh. 14.2 - Prob. 43PECh. 14.2 - Prob. 44PECh. 14.2 - Prob. 45PECh. 14.2 - Prob. 46PECh. 14.2 - For Exercises 39–54, find the sums. (See Examples...Ch. 14.2 - Prob. 48PECh. 14.2 - For Exercises 39–54, find the sums. (See Examples...Ch. 14.2 - Prob. 50PECh. 14.2 - Prob. 51PECh. 14.2 - Prob. 52PECh. 14.2 - Prob. 53PECh. 14.2 - For Exercises 39–54, find the sums. (See Examples...Ch. 14.2 - Prob. 55PECh. 14.2 - Prob. 56PECh. 14.2 - Prob. 57PECh. 14.2 - Prob. 58PECh. 14.2 - Prob. 59PECh. 14.2 - Prob. 60PECh. 14.2 - Prob. 61PECh. 14.2 - Prob. 62PECh. 14.2 - Prob. 63PECh. 14.2 - For Exercises 55–66, write the series in summation...Ch. 14.2 - Prob. 65PECh. 14.2 - Prob. 66PECh. 14.2 - Prob. 67PECh. 14.2 - Prob. 68PECh. 14.2 - Prob. 69PECh. 14.2 - Prob. 70PECh. 14.2 - 71. A famous sequence in mathematics is called the...Ch. 14.3 - Prob. 1SPCh. 14.3 - Prob. 2SPCh. 14.3 - Prob. 3SPCh. 14.3 - Prob. 4SPCh. 14.3 - Prob. 5SPCh. 14.3 - Prob. 1PECh. 14.3 - Prob. 2PECh. 14.3 - Prob. 3PECh. 14.3 - Prob. 4PECh. 14.3 - Prob. 5PECh. 14.3 - Prob. 6PECh. 14.3 - Prob. 7PECh. 14.3 - Prob. 8PECh. 14.3 - Prob. 9PECh. 14.3 - For Exercises 7–12, the first term of an...Ch. 14.3 - Prob. 11PECh. 14.3 - Prob. 12PECh. 14.3 - Prob. 13PECh. 14.3 - Prob. 14PECh. 14.3 - Prob. 15PECh. 14.3 - Prob. 16PECh. 14.3 - Prob. 17PECh. 14.3 - Prob. 18PECh. 14.3 - Prob. 19PECh. 14.3 - Prob. 20PECh. 14.3 - Prob. 21PECh. 14.3 - Prob. 22PECh. 14.3 - Prob. 23PECh. 14.3 - Prob. 24PECh. 14.3 - Prob. 25PECh. 14.3 - Prob. 26PECh. 14.3 - Prob. 27PECh. 14.3 - Prob. 28PECh. 14.3 - Prob. 29PECh. 14.3 - For Exercises 25–33, write the nth term of the...Ch. 14.3 - For Exercises 25–33, write the nth term of the...Ch. 14.3 - Prob. 32PECh. 14.3 - Prob. 33PECh. 14.3 - Prob. 34PECh. 14.3 - Prob. 35PECh. 14.3 - Prob. 36PECh. 14.3 - Prob. 37PECh. 14.3 - Prob. 38PECh. 14.3 - Prob. 39PECh. 14.3 - Prob. 40PECh. 14.3 - Prob. 41PECh. 14.3 - Prob. 42PECh. 14.3 - Prob. 43PECh. 14.3 - For Exercises 42–49, find the number of terms, n,...Ch. 14.3 - Prob. 45PECh. 14.3 - Prob. 46PECh. 14.3 - Prob. 47PECh. 14.3 - Prob. 48PECh. 14.3 - Prob. 49PECh. 14.3 - Prob. 50PECh. 14.3 - Prob. 51PECh. 14.3 - Prob. 52PECh. 14.3 - Prob. 53PECh. 14.3 - Prob. 54PECh. 14.3 - For Exercises 53–66, find the sum of the...Ch. 14.3 - Prob. 56PECh. 14.3 - Prob. 57PECh. 14.3 - Prob. 58PECh. 14.3 - For Exercises 53–66, find the sum of the...Ch. 14.3 - Prob. 60PECh. 14.3 - Prob. 61PECh. 14.3 - Prob. 62PECh. 14.3 - Prob. 63PECh. 14.3 - Prob. 64PECh. 14.3 - For Exercises 53–66, find the sum of the...Ch. 14.3 - Prob. 66PECh. 14.3 - Find the sum of the first 100 positive integers.Ch. 14.3 - Prob. 68PECh. 14.3 - Prob. 69PECh. 14.3 - A triangular array of dominoes has one domino in...Ch. 14.4 - Prob. 1SPCh. 14.4 - Prob. 2SPCh. 14.4 - Prob. 3SPCh. 14.4 - Prob. 4SPCh. 14.4 - Prob. 5SPCh. 14.4 - Prob. 6SPCh. 14.4 - Prob. 7SPCh. 14.4 - Prob. 8SPCh. 14.4 - 1. a. A ______________sequence is a sequence in...Ch. 14.4 - Prob. 2PECh. 14.4 - Prob. 3PECh. 14.4 - Prob. 4PECh. 14.4 - Prob. 5PECh. 14.4 - Prob. 6PECh. 14.4 - Prob. 7PECh. 14.4 - Prob. 8PECh. 14.4 - Prob. 9PECh. 14.4 - Prob. 10PECh. 14.4 - Prob. 11PECh. 14.4 - Prob. 12PECh. 14.4 - Prob. 13PECh. 14.4 - Prob. 14PECh. 14.4 - Prob. 15PECh. 14.4 - Prob. 16PECh. 14.4 - Prob. 17PECh. 14.4 - Prob. 18PECh. 14.4 - Prob. 19PECh. 14.4 - Prob. 20PECh. 14.4 - For Exercises 19–24, write the first five terms of...Ch. 14.4 - Prob. 22PECh. 14.4 - Prob. 23PECh. 14.4 - For Exercises 19–24, write the first five terms of...Ch. 14.4 - Prob. 25PECh. 14.4 - Prob. 26PECh. 14.4 - Prob. 27PECh. 14.4 - Prob. 28PECh. 14.4 - For Exercises 25–30, find the n th term of each...Ch. 14.4 - Prob. 30PECh. 14.4 - Prob. 31PECh. 14.4 - Prob. 32PECh. 14.4 - Prob. 33PECh. 14.4 - Prob. 34PECh. 14.4 - Prob. 35PECh. 14.4 - Prob. 36PECh. 14.4 - Prob. 37PECh. 14.4 - Prob. 38PECh. 14.4 - Prob. 39PECh. 14.4 - Prob. 40PECh. 14.4 - Prob. 41PECh. 14.4 - If the second and third terms of a geometric...Ch. 14.4 - 43. Explain the difference between a geometric...Ch. 14.4 - Prob. 44PECh. 14.4 - Prob. 45PECh. 14.4 - Prob. 46PECh. 14.4 - Prob. 47PECh. 14.4 - Prob. 48PECh. 14.4 - Prob. 49PECh. 14.4 - Prob. 50PECh. 14.4 - Prob. 51PECh. 14.4 - Prob. 52PECh. 14.4 - For Exercises 47–56, find the sum of the geometric...Ch. 14.4 - For Exercises 47–56, find the sum of the geometric...Ch. 14.4 - For Exercises 47–56, find the sum of the geometric...Ch. 14.4 - For Exercises 47–56, find the sum of the geometric...Ch. 14.4 - Prob. 57PECh. 14.4 - Prob. 58PECh. 14.4 - Prob. 59PECh. 14.4 - Prob. 60PECh. 14.4 - Prob. 61PECh. 14.4 - Prob. 62PECh. 14.4 - Prob. 63PECh. 14.4 - Prob. 64PECh. 14.4 - Prob. 65PECh. 14.4 - Prob. 66PECh. 14.4 - Prob. 67PECh. 14.4 - Prob. 68PECh. 14.4 - Prob. 69PECh. 14.4 - Prob. 70PECh. 14.4 - Prob. 71PECh. 14.4 - For Exercises 1–18, determine if the sequence is...Ch. 14.4 - Prob. 2PRECh. 14.4 - Prob. 3PRECh. 14.4 - For Exercises 1–18, determine if the sequence is...Ch. 14.4 - Prob. 5PRECh. 14.4 - Prob. 6PRECh. 14.4 - Prob. 7PRECh. 14.4 - Prob. 8PRECh. 14.4 - For Exercises 1–18, determine if the sequence is...Ch. 14.4 - Prob. 10PRECh. 14.4 - Prob. 11PRECh. 14.4 - Prob. 12PRECh. 14.4 - For Exercises 1–18, determine if the sequence is...Ch. 14.4 - Prob. 14PRECh. 14.4 - Prob. 15PRECh. 14.4 - Prob. 16PRECh. 14.4 - For Exercises 1–18, determine if the sequence is...Ch. 14.4 - For Exercises 1–18, determine if the sequence is...Ch. 14 - Prob. 1RECh. 14 - Prob. 2RECh. 14 - Prob. 3RECh. 14 - Prob. 4RECh. 14 - Prob. 5RECh. 14 - Prob. 6RECh. 14 - Prob. 7RECh. 14 - Prob. 8RECh. 14 - Prob. 9RECh. 14 - 10. Find the middle term of the binomial...Ch. 14 - For Exercises 11–14, write the terms of the...Ch. 14 - Prob. 12RECh. 14 - Prob. 13RECh. 14 - Prob. 14RECh. 14 - Prob. 15RECh. 14 - Prob. 16RECh. 14 - Prob. 17RECh. 14 - Prob. 18RECh. 14 - For Exercises 19–20, find the sum of the...Ch. 14 - Prob. 20RECh. 14 - Prob. 21RECh. 14 - Prob. 22RECh. 14 - Prob. 23RECh. 14 - Prob. 24RECh. 14 - Prob. 25RECh. 14 - Prob. 26RECh. 14 - Prob. 27RECh. 14 - Prob. 28RECh. 14 - For Exercises 29–30, find the number of terms. 3 ,...Ch. 14 - Prob. 30RECh. 14 - Prob. 31RECh. 14 - Prob. 32RECh. 14 - For Exercises 33–36, find the sum of the...Ch. 14 - Prob. 34RECh. 14 - Prob. 35RECh. 14 - Prob. 36RECh. 14 - For Exercises 37–38, find the common ratio. 5 , 15...Ch. 14 - Prob. 38RECh. 14 - Prob. 39RECh. 14 - Prob. 40RECh. 14 - Prob. 41RECh. 14 - Prob. 42RECh. 14 - Prob. 43RECh. 14 - Prob. 44RECh. 14 - Prob. 45RECh. 14 - Prob. 46RECh. 14 - Prob. 47RECh. 14 - Prob. 48RECh. 14 - Prob. 49RECh. 14 - Prob. 50RECh. 14 - Prob. 51RECh. 14 - Prob. 1TCh. 14 - Prob. 2TCh. 14 - Prob. 3TCh. 14 - Prob. 4TCh. 14 - Find the sixth term. ( a − c 3 ) 8Ch. 14 - Write the terms of the sequence. a n = − 3 n + 2 ;...Ch. 14 - 7. Find the sum.
Ch. 14 - a. An 8-in. tomato seedling is planted on Sunday....Ch. 14 - Prob. 9TCh. 14 - Find the common difference. 3 , 13 4 , 7 2 , ...Ch. 14 - 11. Find the common ratio.
Ch. 14 - Prob. 12TCh. 14 - Prob. 13TCh. 14 - Prob. 14TCh. 14 - Write an expression for the n th term of the...Ch. 14 - 16. Find the number of terms in the sequence.
Ch. 14 - 17. Find the number of terms in the sequence.
Ch. 14 - Prob. 18TCh. 14 - 19. Find the sum of the geometric series.
Ch. 14 - Prob. 20TCh. 14 - Given a geometric series with a 6 = 9 and r = 3 ,...Ch. 14 - 22. Find the 18th term of the arithmetic sequence...Ch. 14 - Prob. 23T
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- In Exercises 101–103, perform the indicated operations. 1 1 1 101. x" – 1 x" + 1 x2" – 1 (1-X- -X ) (1 – (1 – 102. (1 - x + 1) x + 2 x + 3 103. (x – y)-1 + (x – y)-2arrow_forwardWrite the first, third and fifth terms of the expansion of (3x – 5y)$.arrow_forwardIn Exercises 126–129, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. 126. Once a GCF is factored from 6y – 19y + 10y“, the remaining trinomial factor is prime. 127. One factor of 8y² – 51y + 18 is 8y – 3. 128. We can immediately tell that 6x? – 11xy – 10y? is prime because 11 is a prime number and the polynomial contains two variables. 129. A factor of 12x2 – 19xy + 5y² is 4x – y.arrow_forward
- Exercises 150–152 will help you prepare for the material covered in the next section. In each exercise, perform the indicated operation. Where possible, reduce the answer to its lowest terms. 7 150. 10 3 1 151. 2 2 7 152. 15 3 10 3 10arrow_forwardWhat are the first three terms?arrow_forwardFor Exercises 115–120, factor the expressions over the set of complex numbers. For assistance, consider these examples. • In Section R.3 we saw that some expressions factor over the set of integers. For example: x - 4 = (x + 2)(x – 2). • Some expressions factor over the set of irrational numbers. For example: - 5 = (x + V5)(x – V5). To factor an expression such as x + 4, we need to factor over the set of complex numbers. For example, verify that x + 4 = (x + 2i)(x – 2i). 115. а. х - 9 116. а. х? - 100 117. а. х - 64 b. x + 9 b. + 100 b. x + 64 118. а. х — 25 119. а. х— 3 120. а. х — 11 b. x + 25 b. x + 3 b. x + 11arrow_forward
- Exercises 38–40 will help you prepare for the material covered in the first section of the next chapter. In Exercises 38-39, simplify each algebraic expression. 38. (-9x³ + 7x? - 5x + 3) + (13x + 2r? – &x – 6) 39. (7x3 – 8x? + 9x – 6) – (2x – 6x? – 3x + 9) 40. The figures show the graphs of two functions. y y 201 10- .... -20- flx) = x³ glx) = -0.3x + 4x + 2arrow_forwardExplain what the pattern of exponents will be for the expansion of the binomial (6 – 7y)0. Be specific. -arrow_forwardSuppose that in a certain state, all automobile license plates have three uppercase letters followed by three digits. Use the method illustrated in Example 9.2.2 to answer the following questions. (a) How many different license plates are possible? To answer this question, think of creating a license plate as a 6-step process, where steps 1–3 are to choose the uppercase letters to put in positions 1–3 and the remaining steps are to choose the digits to put in the remaining positions. There are ways to perform steps 1–3, and there are ways to perform the remaining steps. Thus, the number of license plates is . (b) How many license plates could begin with A and end in 0? In this case, the number of ways to place the A in Step 1 is and the number of ways to place the 0 in the final step is . Thus, the answer is . (c) How many license plates could begin with UVA? In this case, the number of ways to perform steps 1–3 is . Thus, the answer is . (d) How many license…arrow_forward
- A 4. What is the value of the 4th term of the expansion (a + b)"? 5atb 10a b3 O 10a 6?arrow_forwardPlease form the base 4 arithmetic of the expressions below (in your answer, please form 4 rows: 1 for carries, 2 for operands, and 1 for result) (a) 123.32 + 032.22, (b) 123.02 – 012.23arrow_forwardExpand 2(c+ 3). 2(c + 3) = Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Binomial Theorem Introduction to Raise Binomials to High Powers; Author: ProfRobBob;https://www.youtube.com/watch?v=G8dHmjgzVFM;License: Standard YouTube License, CC-BY