BIO Cracking Your Knuckles When you “crack” a knuckle, you cause the knuckle cavity to widen rapidly. This, in turn, allows the synovial fluid to expand into a larger volume. If this expansion is sufficiently rapid, it causes a gas bubble to form in the fluid in a process known as cavitation . This is the mechanism responsible for the cracking sound. (Cavitation can also cause pits in rapidly rotating ship’s propellers.) If a “crack” produces a sound with an intensity level of 57 dB at your ear, which is 18 cm from the knuckle, how far from your knuckle can the “crack” be heard? Assume the sound propagates uniformly in all directions, with no reflections or absorption.
BIO Cracking Your Knuckles When you “crack” a knuckle, you cause the knuckle cavity to widen rapidly. This, in turn, allows the synovial fluid to expand into a larger volume. If this expansion is sufficiently rapid, it causes a gas bubble to form in the fluid in a process known as cavitation . This is the mechanism responsible for the cracking sound. (Cavitation can also cause pits in rapidly rotating ship’s propellers.) If a “crack” produces a sound with an intensity level of 57 dB at your ear, which is 18 cm from the knuckle, how far from your knuckle can the “crack” be heard? Assume the sound propagates uniformly in all directions, with no reflections or absorption.
BIO Cracking Your Knuckles When you “crack” a knuckle, you cause the knuckle cavity to widen rapidly. This, in turn, allows the synovial fluid to expand into a larger volume. If this expansion is sufficiently rapid, it causes a gas bubble to form in the fluid in a process known as cavitation. This is the mechanism responsible for the cracking sound. (Cavitation can also cause pits in rapidly rotating ship’s propellers.) If a “crack” produces a sound with an intensity level of 57 dB at your ear, which is 18 cm from the knuckle, how far from your knuckle can the “crack” be heard? Assume the sound propagates uniformly in all directions, with no reflections or absorption.
Imagine you are out for a stroll on a sunny day when you encounter a lake. Unpolarized light from the sun is reflected off the lake into your eyes. However, you notice when you put on your vertically polarized sunglasses, the light reflected off the lake no longer reaches your eyes. What is the angle between the unpolarized light and the surface of the water, in degrees, measured from the horizontal? You may assume the index of refraction of air is nair=1 and the index of refraction of water is nwater=1.33 . Round your answer to three significant figures. Just enter the number, nothing else.
Chapter 14 Solutions
Physics, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (5th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY