Explanation: Given The wave function for the electron in one dimensional system is, Ψ ( x ) = sin x The probability density curve for the function Ψ 2 ( x ) = sin 2 x contains all the positive values of the given function over the whole range. Therefore, the probability density curve for the given function is, Figure 1 (b) Explanation: Given The wave function for the electron in one dimensional system is, Ψ ( x ) = sin x The probability of finding electron for the given function is maximum on the values of x where the probability density curve has the maximum value. For the given function the value of sin x is maximum at the values x = π 2 and x = 3 π 2 . Therefore, the probability density curve for the given function has a peak at these values of x where probability of finding an electron is maximum. (c) Explanation: The wave function for the electron in one dimensional system is, Ψ ( x ) = sin x The probability of finding electron for the given function is minimum on the values of x where the probability density curve has the minimum value. For the given function the value of sin x is zero at the value of x = π . Therefore, the probability density curve for the given function has a node at this value of x where probability of finding electron is nil. Conclusion: (a) The probability density curve for the given function is as follows: (b) The values of x is maximum at x = π 2 and x = 3 π 2 . (c) The probability of finding an electron at x = π is zero and this point is called node.
Explanation: Given The wave function for the electron in one dimensional system is, Ψ ( x ) = sin x The probability density curve for the function Ψ 2 ( x ) = sin 2 x contains all the positive values of the given function over the whole range. Therefore, the probability density curve for the given function is, Figure 1 (b) Explanation: Given The wave function for the electron in one dimensional system is, Ψ ( x ) = sin x The probability of finding electron for the given function is maximum on the values of x where the probability density curve has the maximum value. For the given function the value of sin x is maximum at the values x = π 2 and x = 3 π 2 . Therefore, the probability density curve for the given function has a peak at these values of x where probability of finding an electron is maximum. (c) Explanation: The wave function for the electron in one dimensional system is, Ψ ( x ) = sin x The probability of finding electron for the given function is minimum on the values of x where the probability density curve has the minimum value. For the given function the value of sin x is zero at the value of x = π . Therefore, the probability density curve for the given function has a node at this value of x where probability of finding electron is nil. Conclusion: (a) The probability density curve for the given function is as follows: (b) The values of x is maximum at x = π 2 and x = 3 π 2 . (c) The probability of finding an electron at x = π is zero and this point is called node.
Given The wave function for the electron in one dimensional system is,
Ψ(x)=sinx
The probability density curve for the function Ψ2(x)=sin2x contains all the positive values of the given function over the whole range. Therefore, the probability density curve for the given function is,
Figure 1
(b)
Explanation:
Given The wave function for the electron in one dimensional system is,
Ψ(x)=sinx
The probability of finding electron for the given function is maximum on the values of x where the probability density curve has the maximum value. For the given function the value of sinx is maximum at the values x=π2 and x=3π2 . Therefore, the probability density curve for the given function has a peak at these values of x where probability of finding an electron is maximum.
(c)
Explanation: The wave function for the electron in one dimensional system is,
Ψ(x)=sinx
The probability of finding electron for the given function is minimum on the values of x where the probability density curve has the minimum value. For the given function the value of sinx is zero at the value of x=π . Therefore, the probability density curve for the given function has a node at this value of x where probability of finding electron is nil.
Conclusion:
(a) The probability density curve for the given function is as follows:
(b) The values of x is maximum at x=π2 and x=3π2 . (c) The probability of finding an electron at x=π is zero and this point is called node.
If you measure a quantity four times and the standard deviation is 1.0% of the average, can you be 90% confident that the true value is within 1.2% of the measured average?
Write down three most common errors in thermogravimetric analysis. Identify them as systematic or random errors and discuss how you can minimize the errors for better results.
a) A favorable entropy change occurs when ΔS is positive. Does the order of the system increase or decrease when ΔS is positive? (b) A favorable enthalpy change occurs when ΔH is negative. Does the system absorb heat or give off heat when ΔH is negative? (c) Write the relation between ΔG, ΔH, and ΔS. Use the results of parts (a) and (b) to state whether ΔG must be positive or negative for a spontaneous change. For the reaction, ΔG is 59.0 kJ/mol at 298.15 K. Find the value of K for the reaction.
Chapter 14 Solutions
Laboratory Experiments for Chemistry: The Central Science (13th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY