ORGANIC CHEM PRINT STUDY GDE & SSM
ORGANIC CHEM PRINT STUDY GDE & SSM
4th Edition
ISBN: 9781119810650
Author: Klein
Publisher: WILEY
Question
Book Icon
Chapter 14, Problem 72IP
Interpretation Introduction

Interpretation: The isotope pattern in mass spectrum for the given compound with molecular formula C90H180Br2 should be determined.

Concept Introduction:

Mass spectroscopy: It is a form of spectroscopic technique which is used for the elucidation of the molecular formula and molecular weight of the compound, depending upon the mass of the molecule.

Molecular formula: It represents the types of atoms with their total number present in a given molecule.

Molecular ion peak (M)+· : It is defined as the heaviest peak in the IR spectrum of the molecule which represents the largest molecular ion in the given molecule with greater m/z value.

Base peak: It is the tallest peak in the spectrum.

The (M+1)+· peak: It denotes the peak that arises next to molecular ion peak in the mass spectrum. The peak arises due to the presence of the isotope of carbon since carbon has one isotope (13C).

The (M+1)+· peak in mass spectroscopy is used to explain the number of carbon atoms present in a molecule depending on the abundance of (M+1)+· peak.

The (M+2)+· peak: It denotes the peak that arises next to molecular ion peak in the mass spectrum with respect to the presence of major isotopes in the molecule especially it is used to find the presence of chlorine and bromine since they has two isotopes.

The Hydrogen Deficiency Index (HDI): It is used to measure the number of degrees of unsaturation (double and triple bonds) present in a given molecule. It is determined by using the formula

HDI=12[(2×No. of Carbon atoms)+2+(No. of Nitrogen atoms)-(No. of Hydrogen atoms)-(No. of halogens)]

Isotopes: The elements with same atomic number but with different mass number are said to be isotopes of each other.

To determine: The isotope pattern for the given compound in mass spectrum.

Blurred answer
Students have asked these similar questions
Done 11:14 ⚫ worksheets.beyondlabz.com 5 (a). Using the peak information you listed in the tables for both structures, assign each peak to that portion of the structure that produces the peak in the NMR spectrum. Draw this diagram on your own sheet of paper and attach the sketch of your drawing to this question. Question 6 5 (b). Using the peak information you listed in the tables for both structures, assign each peak to that portion of the structure that produces the peak in the NMR spectrum. Draw this diagram on your own sheet of paper and attach the sketch of your drawing to this question. Question 7 6. Are there any differences between the spectra you obtained in Beyond Labz and the predicted spectra? If so, what were the differences? <
2. Predict the NMR spectra for each of these two compounds by listing, in the NMR tables below, the chemical shift, the splitting, and the number of hydrogens associated with each predicted peak. Sort the peaks from largest chemical shift to lowest. **Not all slots must be filled** Peak Chemical Shift (d) 5.7 1 Multiplicity multiplate .......... 5.04 double of doublet 2 4.98 double of doublet 3 4.05 doublet of quartet 4 5 LO 3.80 quartet 1.3 doublet 6 Peak Chemical Shift (d) Multiplicity
Interpreting NMR spectra is a skill that often requires some amount of practice, which, in turn, necessitates access to a collection of NMR spectra. Beyond Labz Organic Synthesis and Organic Qualitative Analysis have spectral libraries containing over 700 1H NMR spectra. In this assignment, you will take advantage of this by first predicting the NMR spectra for two closely related compounds and then checking your predictions by looking up the actual spectra in the spectra library. After completing this assignment, you may wish to select other compounds for additional practice. 1. Write the IUPAC names for the following two structures: Question 2 Question 3 2. Predict the NMR spectra for each of these two compounds by listing, in the NMR tables below, the chemical shift, the splitting, and the number of hydrogens associated with each predicted peak. Sort the peaks from largest chemical shift to lowest. **Not all slots must be filled**
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY