Concept explainers
The equilibrium readings of both upper and lower scales.
Answer to Problem 71AP
The lower scale reading is
Explanation of Solution
The weight of the iron block is balanced by the sum of tension on spring and the buoyant force exerted on iron block by the oil when viewed from the upper part of the scale.
Here,
Write the expression for density of iron block.
Here,
Rearrange equation (II) to find
By Archimedes law, volume of iron block dipped in oil is equal to the volume of oil displaced from the jar.
Here,
Write the expression for the buoyant force exerted by the oil on the iron block.
Here,
Rearrange equation (I) to find
Use expression (V) in (VI) to find
Write the expression for force of gravity on iron block.
Here,
Use expression (VIII) in (VII).
Use expression (III) in (IX) to find
Now observe the system from the bottom side of scale. Let
Write the sum of all the vertical forces acting on the system.
Here,
At equilibrium the sum of all vertical forces is equal to zero.
Write the expression for
Here,
Write the expression for
Here,
Use expressions (XIV), (XIII), and (VIII) in expression (XII) and solve for
Conclusion:
Substitute
Substitute
Therefore, the lower scale reading is
Want to see more full solutions like this?
Chapter 14 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- A 10.0-kg block of metal measuring 12.0 cm by 10.0 cm by 10.0 cm is suspended from a scale and immersed in water as shown in Figure P15.24b. The 12.0-cm dimension is vertical, and the top of the block is 5.00 cm below the surface of the water. (a) What are the magnitudes of the forces acting on the top and on the bottom of the block due to the surrounding water? (b) What is the reading of the spring scale? (c) Show that the buoyant force equals the difference between the forces at the top and bottom of the block.arrow_forwardA hollow copper (Cu = 8.92 103 kg/m3) spherical shell of mass m = 0.950 kg floats on water with its entire volume below the surface. a. What is the radius of the sphere? b. What is the thickness of the shell wall?arrow_forward. A juniper-wood plank measuring 0.25 ft by 1 ft by 16 ft is totally submerged in water, (a) What is its weight? (b) What is the buoyant force acting on it? (c) What is the size and the direction of the net force on it?arrow_forward
- A fluid flows through a horizontal pipe that widens, making a 45 angle with the y axis (Fig. P15.48). The thin part of the pipe has radius R, and the fluids speed in the thin part of the pipe is v0. The origin of the coordinate system is at the point where the pipe begins to widen. The pipes cross section is circular. a. Find an expression for the speed v(x) of the fluid as a function of position for x 0 b. Plot your result: v(x) versus x. FIGURE P15.48 (a) The continuity equation (Eq. 15.21) relates the cross-sectional area to the speed of the fluid traveling through the pipe. A0v0 = A(x)v(x) v(x)=A0v0A(x) The cross sectional area is the area of a circle whose radius is y(x). The widening pan of the pipe is a straight line with slope of 1 and intercept y(0) = R. y(x) = mx + b = x + R A(x) = [y(x)]2 = (x + R)2 Plug this into the formula for the velocity. Plug this into the formula for the velocity. v(x)=A0v0(x+R)2arrow_forwardA uniform wooden board of length L and mass M is hinged at the top of a vertical wall of a container partially filled with a certain liquid (Fig. P15.81). (If there were no liquid in the container, the board would hang straight down.) Three-fifths of the length of the board is submerged in the liquid when the board is in equilibrium. Find the ratio of the densities of the liquid and the board.arrow_forwardA tank with a flat bottom of area A and vertical sides is filled to a depth h with water. The pressure is P0 at the top surface. (a) What is the absolute pressure at the bottom of the tank? (b) Suppose an object of mass M and density less than the density of water is placed into the tank and floats. No water overflows. What is the resulting increase in pressure at the bottom of the tank?arrow_forward
- A wooden block floats in water, and a steel object is attached to the bottom of the block by a string as in Figure OQ15.1. If the block remains floating, which of the following statements are valid? (Choose all correct statements.) (a) The buoyant force on the steel object is equal to its weight. (b) The buoyant force on the block is equal to its weight. (c) The tension in the string is equal to the weight of the steel object. (d) The tension in the string is less than the weight of the steel object. (e) The buoyant force on the block is equal to the volume of water it displaces.arrow_forwardIf your body has a density of 995 kg/m3, what fraction of you will be submerged when floating gently in: (a) Freshwater? (b) Salt water, which has a density of 1027 kg/m3?arrow_forwardA man of mass m = 70.0 kg and having a density of = 1 050 kg/m3 (while holding his breath) is completely submerged in water, (a) Write Newtons second law for this situation in terms of the mans mass m, the density of water , his volume V, and g. Neglect any viscous drag of the water, (b) Substitute m = V into Newtons second law and solve for the acceleration a, canceling common factors, (c) Calculate the numeric value of the mans acceleration, (d) How long does it take the man to sink 8.00 m to the bottom of the lake?arrow_forward
- A beaker of mass mb containing oil of mass mo and density o rests on a scale. A block of iron of mass mFe suspended from a spring scale is completely submerged in the oil as shown in Figure P15.63. Determine the equilibrium readings of both scales. Figure P15.63 Problems 63 and 64.arrow_forwardA spherical submersible 2.00 m in radius, armed with multiple cameras, descends under water in a region of the Atlantic Ocean known for shipwrecks and finds its first shipwreck at a depth of 1.75 103 m. Seawater has density 1.03 103 kg/m3, and the air pressure at the oceans surface is 1.013 105 Pa. a. What is the absolute pressure at the depth of the shipwreck? b. What is the buoyant force on the submersible at the depth of the shipwreck?arrow_forwardA manometer is shown in Figure P15.36. Rank the pressures at the five locations indicated from highest to lowest. Indicate equal pressures, if any. FIGURE P15.36arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning