
Fundamentals of Thermal-Fluid Sciences
5th Edition
ISBN: 9780078027680
Author: Yunus A. Cengel Dr., Robert H. Turner, John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 69P
To determine
The required to drain the water in the tank.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
It is decided to install several single-jet Pelton wheels to produce a total power of 18 MW. The
available head is 246 m. The wheel rotational speed is 650 rpm and the speed ratio (❤) = 0.46.
The diameter of the nozzle (jet) is limited to be 0.167 m with a Cv of 0.95. The efficiency of each
turbine is 87%. Determine: (1) The number of Pelton wheels to be used, and (2) The bucket
angle.
Please show All work and fill it in thermodynamics
Quick solution required.
My request, Don't use Ai.
Mechanical engineering
Chapter 14 Solutions
Fundamentals of Thermal-Fluid Sciences
Ch. 14 - Prob. 1PCh. 14 - Consider laminar flow in a circular pipe. Is the...Ch. 14 - What is hydraulic diameter? How is it defined?...Ch. 14 - How is the hydrodynamic entry length defined for...Ch. 14 - Why are liquids usually transported in circular...Ch. 14 - What is the physical significance of the Reynolds...Ch. 14 - Consider a person walking first in air and then in...Ch. 14 - Show that the Reynolds number for flow in a...Ch. 14 - Which fluid at room temperature requires a larger...Ch. 14 - How does surface roughness affect the pressure...
Ch. 14 - Shown here is a cool picture of water being...Ch. 14 - Someone claims that the volume flow rate in a...Ch. 14 - Someone claims that the average velocity in a...Ch. 14 - Someone claims that the shear stress at the center...Ch. 14 - Someone claims that in fully developed turbulent...Ch. 14 - How does the wall shear stress τw vary along the...Ch. 14 - In the fully developed region of flow in a...Ch. 14 - How is the friction factor for flow in a pipe...Ch. 14 - Discuss whether fully developed pipe flow is one-,...Ch. 14 - Consider fully developed flow in a circular pipe...Ch. 14 - Consider fully developed laminar flow in a...Ch. 14 - Explain why the friction factor is independent of...Ch. 14 - What is turbulent viscosity? What causes it?
Ch. 14 - Consider fully developed laminar flow in a...Ch. 14 - How is head loss related to pressure loss? For a...Ch. 14 - Consider laminar flow of air in a circular pipe...Ch. 14 - What is the physical mechanism that causes the...Ch. 14 - The velocity profile for the fully developed...Ch. 14 - Water flows steadily through a reducing pipe...Ch. 14 - Water at 10°C (ρ = 999.7 kg/m3 and μ = 1.307 ×...Ch. 14 - Consider an air solar collector that is 1 m wide...Ch. 14 - Heated air at 1 atm and 100°F is to be transported...Ch. 14 - In fully developed laminar flow in a circular...Ch. 14 - The velocity profile in fully developed laminar...Ch. 14 - Repeat Prob. 14–34 for a pipe of inner radius 7...Ch. 14 - Water at 15°C (ρ = 999.1 kg/m3 and μ = 1.138 ×...Ch. 14 - Consider laminar flow of a fluid through a square...Ch. 14 - Repeat Prob. 14–37 for turbulent flow in smooth...Ch. 14 - Air enters a 10-m-long section of a rectangular...Ch. 14 - Water at 70°F passes through...Ch. 14 - Oil with ρ = 876 kg/m3 and μ = 0.24 kg/m·s is...Ch. 14 - Glycerin at 40°C with ρ = 1252 kg/m3 and μ = 0.27...Ch. 14 - Air at 1 atm and 60°F is flowing through a 1 ft ×...Ch. 14 - Prob. 44PCh. 14 - Prob. 45PCh. 14 - Oil with a density of 850 kg/m3 and kinematic...Ch. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Prob. 50PCh. 14 - Prob. 51PCh. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - Prob. 56PCh. 14 - Prob. 57PCh. 14 - Water is to be withdrawn from an 8-m-high water...Ch. 14 - Prob. 59PCh. 14 - Prob. 60PCh. 14 - Prob. 61PCh. 14 - Prob. 62PCh. 14 - Prob. 63PCh. 14 - Prob. 64PCh. 14 - Consider two identical 2-m-high open tanks filled...Ch. 14 - A piping system involves two pipes of different...Ch. 14 - Prob. 67PCh. 14 - Prob. 68PCh. 14 - Prob. 69PCh. 14 - Prob. 70PCh. 14 - The water needs of a small farm are to be met by...Ch. 14 - Prob. 72PCh. 14 - Prob. 73PCh. 14 - Prob. 74PCh. 14 - Prob. 75PCh. 14 - Prob. 76PCh. 14 - Prob. 77PCh. 14 - Prob. 78PCh. 14 - Prob. 80PCh. 14 - Prob. 81PCh. 14 - A vented tanker is to be filled with fuel oil with...Ch. 14 - Two pipes of identical length and material are...Ch. 14 - Prob. 84PCh. 14 - Prob. 85PCh. 14 - Prob. 86PCh. 14 - Prob. 87PCh. 14 - Prob. 88PCh. 14 - Prob. 90PCh. 14 - Prob. 91PCh. 14 - Prob. 92PCh. 14 - Prob. 93PCh. 14 - Prob. 94RQCh. 14 - Prob. 95RQCh. 14 - Prob. 96RQCh. 14 - Prob. 97RQCh. 14 - Prob. 98RQCh. 14 - Prob. 99RQCh. 14 - Repeat Prob. 14–99E assuming the pipe is inclined...Ch. 14 - Prob. 101RQCh. 14 - Prob. 102RQCh. 14 - Prob. 103RQCh. 14 - Prob. 104RQCh. 14 - Two pipes of identical diameter and material are...Ch. 14 - Prob. 106RQCh. 14 - Prob. 107RQCh. 14 - Prob. 108RQCh. 14 - Prob. 109RQCh. 14 - Prob. 110RQCh. 14 - Prob. 111RQCh. 14 - Prob. 112RQCh. 14 - Prob. 114RQCh. 14 - Prob. 115RQCh. 14 - Prob. 116RQCh. 14 - Prob. 118RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please give handwritten solution, don't use chatgpt. Fbd should be includedarrow_forward(I) [40 Points] Using centered finite difference approximations as done in class, solve the equation for O: d20 dx² + 0.010+ Q=0 subject to the boundary conditions shown in the stencil below. Do this for two values of Q: (a) Q = 0.3, and (b) Q= √(0.5 + 2x)e-sinx (cos(5x)+x-0.5√1.006-x| + e −43*|1+.001+x* | * sin (1.5 − x) + (cosx+0.001 + ex-1250+ sin (1-0.9x)|) * x - 4.68x4. For Case (a) (that is, Q = 0.3), use the stencil in Fig. 1. For Case (b), calculate with both the stencils in Fig. 1 and Fig 2. For all the three cases, show a table as well as a plot of O versus x. Discuss your results. Use MATLAB and hand in the MATLAB codes. 1 0=0 x=0 2 3 4 0=1 x=1 Fig 1 1 2 3 4 5 6 7 8 9 10 11 0=0 x=0 0=1 x=1 Fig 2arrow_forwardFig 2 (II) [60 Points] Using centered finite difference approximation as done in class, solve the equation: 020 020 + მx2 მy2 +0.0150+Q=0 subject to the boundary conditions shown in the stencils below. Do this for two values of Q: (a) Q = 0.3, and (b) Q = 10.5x² + 1.26 * 1.5 x 0.002 0.008. For Case (a) (that is, Q = 0.3) use Fig 3. For Case (b), use both Fig. 3 and Fig 4. For all the three cases, show a table as well as the contour plots of versus (x, y), and the (x, y) heat flux values at all the nodes on the boundaries x = 1 and y = 1. Discuss your results. Use MATLAB and hand in the MATLAB codes. (Note that the domain is (x, y)e[0,1] x [0,1].) 0=0 0=0 4 8 12 16 10 Ꮎ0 15 25 9 14 19 24 3 11 15 0=0 8-0 0=0 3 8 13 18 23 2 6 сл 5 0=0 10 14 6 12 17 22 1 6 11 16 21 13 e=0 Fig 3 Fig 4 Textbook: Numerical Methods for Engineers, Steven C. Chapra and Raymond P. Canale, McGraw-Hill, Eighth Edition (2021).arrow_forward
- Ship construction question. Sketch and describe the forward arrangements of a ship. Include componets of the structure and a explanation of each part/ term. Ive attached a general fore end arrangement. Simplfy construction and give a brief describion of the terms.arrow_forwardProblem 1 Consider R has a functional relationship with variables in the form R = K xq xx using show that n ✓ - (OR 1.) = i=1 2 Их Ux2 Ихэ 2 (177)² = ² (1)² + b² (12)² + c² (1)² 2 UR R x2 x3arrow_forward4. Figure 3 shows a crank loaded by a force F = 1000 N and Mx = 40 Nm. a. Draw a free-body diagram of arm 2 showing the values of all forces, moments, and torques that act due to force F. Label the directions of the coordinate axes on this diagram. b. Draw a free-body diagram of arm 2 showing the values of all forces, moments, and torques that act due to moment Mr. Label the directions of the coordinate axes on this diagram. Draw a free body diagram of the wall plane showing all the forces, torques, and moments acting there. d. Locate a stress element on the top surface of the shaft at A and calculate all the stress components that act upon this element. e. Determine the principal stresses and maximum shear stresses at this point at A.arrow_forward
- 3. Given a heat treated 6061 aluminum, solid, elliptical column with 200 mm length, 200 N concentric load, and a safety factor of 1.2, design a suitable column if its boundary conditions are fixed-free and the ratio of major to minor axis is 2.5:1. (Use AISC recommended values and round the ellipse dimensions so that both axes are whole millimeters in the correct 2.5:1 ratio.)arrow_forward1. A simply supported shaft is shown in Figure 1 with w₁ = 25 N/cm and M = 20 N cm. Use singularity functions to determine the reactions at the supports. Assume El = 1000 kN cm². Wo M 0 10 20 30 40 50 60 70 80 90 100 110 cm Figure 1 - Problem 1arrow_forwardPlease AnswerSteam enters a nozzle at 400°C and 800 kPa with a velocity of 10 m/s and leaves at 375°C and 400 kPa while losing heat at a rate of 26.5 kW. For an inlet area of 800 cm2, determine the velocity and the volume flow rate of the steam at the nozzle exit. Use steam tables. The velocity of the steam at the nozzle exit is m/s. The volume flow rate of the steam at the nozzle exit is m3/s.arrow_forward
- 2. A support hook was formed from a rectangular bar. Find the stresses at the inner and outer surfaces at sections just above and just below O-B. -210 mm 120 mm 160 mm 400 N B thickness 8 mm = Figure 2 - Problem 2arrow_forwardSteam flows steadily through a turbine at a rate of 45,000 lbm/h, entering at 1000 psia and 900°F and leaving at 5 psia as saturated vapor. If the power generated by the turbine is 4.1 MW, determine the rate of heat loss from the steam. The enthalpies are h1 = 1448.6 Btu/lbm and h2 = 1130.7 Btu/lbm. The rate of heat loss from the steam is Btu/s.arrow_forwardThe A/D converter wit the specifications listed below is planned to be used in an environment in which the A/D converter temperature may change by ± 10 °C. Estimate the contributions of conversion and quantization errors to the uncertainty in the digital representation of an analog voltage by the converter. FSO N Linearity error Temperature drift error Analog to Digital (A/D) Converter 0-10 V 12 bits ± 3 bits 1 bit/5 °Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License