
DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 14, Problem 62RQ
To determine
How properties of the core can be enhanced.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
This is part B
Part A's question and answer was find moment of inertia (Ix = 3.90×10^5) and radius of gyration (kx = 21.861)
Determine the centroid ( x & y ) of the I-section, Calculate the moment of inertia of the section about itscentroidal x & y axes. How or why is this result different fromthe result of a previous problem?
Determine by direct integration the moment of inertia of theshaded area of figure with respect to the y axis shown
Consider the feedback controlled blending system shown below, which is designed to keep theoutlet concentration constant despite potential variations in the stream 1 composition. The density of all streamsis 920 kg/m3. At the nominal steady state, the flow rates of streams 1 and 2 are 950 and 425 kg/min,respectively, the liquid level in the tank is 1.3 m, the incoming mass fractions are x1 = 0.27, x2 = 0.54. Noticethe overflow line, indicating that the liquid level remains constant (i.e. any change in total inlet flow ratetranslates immediately to the same change in the outlet flow rate). You may assume the stream 1 flowrate andthe stream 2 composition are both constant. Use minutes as the time unit throughout this problem.
Identify any controlled variable(s) (CVs), manipulated variable(s) (MVs),and disturbance variable(s) (DVs) in this problem. For each, explain how you know that’show it is classified.CVs: ___________, MVs: _____________, DVs: ______________
b) Draw a block diagram…
Chapter 14 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 14 - What are some of the factors that influence the...Ch. 14 - What are the three basic categories of casting...Ch. 14 - What metals are frequently cast into products?Ch. 14 - What features combine to make cast iron and...Ch. 14 - Which type of casting is the most common and most...Ch. 14 - Prob. 6RQCh. 14 - Prob. 7RQCh. 14 - What is the simplest and least expensive type of...Ch. 14 - What is a match plate, and how does it aid...Ch. 14 - How is a cope-and-drag pattern different from a...
Ch. 14 - Prob. 11RQCh. 14 - Prob. 12RQCh. 14 - For what types of products might a loose-piece...Ch. 14 - What are the four primary requirements of molding...Ch. 14 - Prob. 15RQCh. 14 - Prob. 16RQCh. 14 - What is a muller, and what function does it...Ch. 14 - Prob. 18RQCh. 14 - What is a standard rammed specimen for evaluating...Ch. 14 - What is permeability, and why is it important in...Ch. 14 - How does the ratio of water to clay affect the...Ch. 14 - How is the hardness of molding sand determined?Ch. 14 - Prob. 23RQCh. 14 - How does the size and shape of the sand grains...Ch. 14 - Prob. 25RQCh. 14 - Prob. 26RQCh. 14 - Prob. 27RQCh. 14 - Prob. 28RQCh. 14 - Prob. 29RQCh. 14 - Prob. 30RQCh. 14 - What are hot tears, and what can cause them to...Ch. 14 - When might hand ramming be the preferred method of...Ch. 14 - Prob. 33RQCh. 14 - Prob. 34RQCh. 14 - Prob. 35RQCh. 14 - Prob. 36RQCh. 14 - What is stack molding?Ch. 14 - Prob. 38RQCh. 14 - What are the components of green sand?Ch. 14 - Prob. 40RQCh. 14 - Prob. 41RQCh. 14 - Prob. 42RQCh. 14 - What are some of the advantages and limitations of...Ch. 14 - Prob. 44RQCh. 14 - Prob. 45RQCh. 14 - Prob. 46RQCh. 14 - Prob. 47RQCh. 14 - Prob. 48RQCh. 14 - Prob. 49RQCh. 14 - Why do shell molds have excellent permeability and...Ch. 14 - Prob. 51RQCh. 14 - Prob. 52RQCh. 14 - Prob. 53RQCh. 14 - Prob. 54RQCh. 14 - Prob. 55RQCh. 14 - What is the sand binder in the core-oil process,...Ch. 14 - What is the binder in the hot-box core-making...Ch. 14 - What is the primary attraction of the cold-box...Ch. 14 - What is shelf life? How is it different from bench...Ch. 14 - Prob. 60RQCh. 14 - Prob. 61RQCh. 14 - Prob. 62RQCh. 14 - Prob. 63RQCh. 14 - Prob. 64RQCh. 14 - Prob. 65RQCh. 14 - Why are plaster molds only suitable for the...Ch. 14 - How does the Antioch process provide permeability...Ch. 14 - What is the primary performance difference between...Ch. 14 - Prob. 69RQCh. 14 - Prob. 70RQCh. 14 - Prob. 71RQCh. 14 - Describe the progressive construction of an...Ch. 14 - Why are investment casting molds generally...Ch. 14 - Prob. 74RQCh. 14 - What are some of the attractive features of...Ch. 14 - What recent development has made one-of-a-kind or...Ch. 14 - Prob. 77RQCh. 14 - Prob. 78RQCh. 14 - What are some of the benefits of not having to...Ch. 14 - What are some of the ways by which expanded...Ch. 14 - Prob. 81RQCh. 14 - Prob. 82RQCh. 14 - Prob. 83RQCh. 14 - Prob. 84RQCh. 14 - Prob. 85RQCh. 14 - Prob. 86RQCh. 14 - What are the most common single-use mold...Ch. 14 - What are the most common methods of core...Ch. 14 - Although cores increase the cost of castings, they...Ch. 14 - Several of the additive manufacturing processes...Ch. 14 - Additive manufacturing processes can also build...Ch. 14 - Figure CS-14 shows the hitch ball component of a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A heat transfer experiment is conducted on two identical spheres which are initially at the same temperature. The spheres are cooled by placing them in a channel. The fluid velocity in the channel is non-uniform, having a profile as shown. Which sphere cools off more rapidly? Explain. V 1arrow_forwardMy ID# 016948724 last 2 ID# 24 Last 3 ID# 724 Please help to find the correct answer for this problem using my ID# first write le line of action and then help me to find the forces {fx= , fy= mz= and for the last find the moment of inertial about the show x and y axes please show how to solve step by steparrow_forwardMy ID# 016948724 last 2 ID# 24 Last 3 ID# 724 Please help to find the correct answer for this problem using my ID# first write le line of action and then help me to find the forces and the tension {fx= , fy= mz=arrow_forward
- My ID# 016948724 last 2 ID# 24 Last 3 ID# 724 Please help to find the correct answer for this problem using my ID# first write le line of action and then help me to find the forces {fx= , fy= mz=arrow_forwardmy ID is 016948724 Last 2 ID# 24 Last 3 ID# 724 please help me to solve this problem step by step show me how to solve first wirte the line actions and then find the forces {fx=, fy=, mz= and for the last step find the support reactions and find forcesarrow_forwardUppgift 1 (9p) 3 m 3 m 3 m 3 m H G F 3 m ↑ Dy D B AAY 30° 8 kN Ay Fackverket i figuren ovan är belastat med en punktlast. Bestäm normalkraften i stängerna BC, BG och FG.arrow_forward
- The cardiovascular countercurrent heat exchnager mechanism is to warm venous blood from 28 degrees C to 35 degrees C at a mass flow rate of 2 g/s. The artery inflow temp is 37 degrees C at a mass flow rate of 5 g/s. The average diameter of the vein is 5 cm and the overall heat transfer coefficient is 125 W/m^2*K. Determine the overall blood vessel length needed too warm the venous blood to 35 degrees C if the specific heat of both arterial and venous blood is constant and equal to 3475 J/kg*K.arrow_forwardThe forces Qy=12 kNQy=12kN and Qz=16 kNQz=16kN act on the profile at the shear center C. Calculate: a) Shear flow at point B (2 points)b) Shear stress at point D (3 points)arrow_forwardConsider the feedback controlled blending system shown below, which is designed to keep theoutlet concentration constant despite potential variations in the stream 1 composition. The density of all streamsis 920 kg/m3. At the nominal steady state, the flow rates of streams 1 and 2 are 950 and 425 kg/min,respectively, the liquid level in the tank is 1.3 m, the incoming mass fractions are x1 = 0.27, x2 = 0.54. Noticethe overflow line, indicating that the liquid level remains constant (i.e. any change in total inlet flow ratetranslates immediately to the same change in the outlet flow rate). You may assume the stream 1 flowrate andthe stream 2 composition are both constant. Use minutes as the time unit throughout this problem. d) Derive the first order process and disturbance transfer functions;Gp= Kp/(tou*s+1) and Gd=Kd/(tou*s+1) and calculate and list the values and units of the parameters. e) Using the given information, write the general forms of Gm, GIP, and Gv below(in terms of…arrow_forward
- a) Briefly explain what ratio control is. Give an example of a common chemical engineering situation in whichratio control would be useful and for that example state exactly how ratio control works (what would bemeasured, what is set, and how the controller logic works).b) Briefly explain what cascade control is. Give an example of a common chemical engineering situation inwhich cascade control would be useful and for that example state exactly how cascade control works (whatwould be measured, what is set, and how the controller logic works).arrow_forwardDetermine the reaction force acting on the beam AB, given F = 680 N. 5 4 4 m 3 3 A B 30° 3 m F (N)arrow_forwardThe frame in the figure is made of an HEA 300 profile (E = 210 GPa, material S355).a) Determine the support reactions at point A. (1p)b) Sketch the bending moment diagram caused by the loading. (1p)c) Using the principle of virtual work (unit load method), calculate the vertical displacement at point B using moment diagrams. Also take into account the compression of the column. (3p)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage LearningPrecision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning

Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Introduction to Ferrous and Non-Ferrous Metals.; Author: Vincent Ryan;https://www.youtube.com/watch?v=zwnblxXyERE;License: Standard Youtube License