Physics for Scientists and Engineers With Modern Physics
Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 14, Problem 60AP

(a)

To determine

To determine: The appropriate model to describe the system when balloon is stationary.

(a)

Expert Solution
Check Mark

Answer to Problem 60AP

Answer: The appropriate model to describe the system is particle in equilibrium.

Explanation of Solution

Explanation:

Given information: The mass of the balloon is 0.250kg tied to a uniform length 2.00m and mass 0.050kg . The balloon is spherical with radius 0.4m and the density of the air is 1.20kg/m3 .

If a system remains stationary, the sum of all forces acted on a system in all direction vertical as well as horizontal is equal to zero. This condition is also called is equilibrium condition.

Conclusion:

Therefore, appropriate model to describe the system is particle in equilibrium.

(b)

To determine

To determine: The force equation for the balloon for this model.

(b)

Expert Solution
Check Mark

Answer to Problem 60AP

Answer: The force equation for the balloon for this model is BFbFHeFs=0 .

Explanation of Solution

Explanation:

Given information: The mass of the balloon is 0.250kg tied to a uniform length 2.00m and mass 0.050kg . The balloon is spherical with radius 0.4m and the density of the air is 1.20kg/m3 .

In equilibrium condition, sum of all forces in vertical direction is equal to zero.

Fy=0Fy=BFbFHeFs=0 (I)

  • B is buoyant force.
  • Fb is the weight of the balloon (envelope)
  • FHe is the weight of the helium gas.
  • Fs is the weight of the string.

Conclusion:

Therefore, the force equation for the balloon for this model is Fy=BFbFHeFs=0 .

(c)

To determine

To determine: The mass of the string in terms of mb , r , ρHe and ρair .

(c)

Expert Solution
Check Mark

Answer to Problem 60AP

Answer: The mass of the string in the terms of mb , r , ρHe and ρair is 43πr3(ρairρHe)mb .

Explanation of Solution

Explanation:

Given information: The mass of the balloon is 0.250kg tied to a uniform length 2.00m and mass 0.050kg . The balloon is spherical with radius 0.4m and the density of the air is 1.20kg/m3 .

From equation (I),

BFbFHeFs=0

The buoyant force act on the balloon is equal to the displaced volume of the air by the balloon.

Formula to calculate the buoyant force acting on the balloon is,

B=ρairg×43πr3

  • ρair is the density of the air.
  • r is the radius of the balloon.
  • g is the acceleration due to gravity.

Formula to calculate the weight of the balloon is,

Fb=mbg

  • mb is the mass of the balloon.

Formula to calculate the weight of the helium gas is,

FHe=mHeg

  • mHe is the mass of the helium gas.

Formula to calculate the weight of the string is,

Fs=msg

  • ms is the mass of the string.

Substitute ρairg×43πr3 for B , mHeg for FHe , mbg for Fb and msg for Fs in equation (I).

ρairg×43πr3mbgmHegmsg=0

Formula to calculate the mass of the helium gas is,

mHe=ρHe×43πr3

  • ρHe is the density of the helium gas.

Substitute ρHe×43πr3 for mHe in above expression.

ρairg×43πr3mbgρHe×43πr3gmsg=0

Rearrange the above expression for ms

ms=ρair×43πr3ρHe×43πr3mbms=43πr3(ρairρHe)mb

Conclusion:

Therefore, the mass of the string in terms of mb , r , ρHe and ρair is 43πr3(ρairρHe)mb .

(d)

To determine

To determine: The mass of the string.

(d)

Expert Solution
Check Mark

Answer to Problem 60AP

Answer: The mass of the string is 0.0237kg .

Explanation of Solution

Explanation:

Given information: The mass of the balloon is 0.250kg tied to a uniform length 2.00m and mass 0.050kg . The balloon is spherical with radius 0.4m and the density of the air is 1.20kg/m3 .

From equation (II),

ms=43πr3(ρairρHe)mb

Substitute 1.20kg/m3 for ρair , 0.250kg for mb , 0.4m for r and 0.179kg/m3 for ρHe to find ms .

ms=43π(0.4m)3(1.20kg/m30.179kg/m3)0.250kg=0.0237kg

Conclusion:

Therefore, the mass of the string is 0.0237kg .

(e)

To determine

To determine: The length h of the string if mass of the string is 0.050kg .

(e)

Expert Solution
Check Mark

Answer to Problem 60AP

Answer: The length h of the string is 0.948m if mass of the string is 0.050kg .

Explanation of Solution

Explanation:

Given information: The mass of the balloon is 0.250kg tied to a uniform length 2.00m and mass 0.050kg . The balloon is spherical with radius 0.4m and the density of the air is 1.20kg/m3 .

From equation (II),

ms=43πr3(ρairρHe)mb

The mass of the string of height h is equal to the ms×hl .

Substitute ms×hl for ms in above expression.

ms×hl=43πr3(ρairρHe)mb

Substitute 1.20kg/m3 for ρair , 0.250kg for mb , 0.4m for r , 0.050kg for ms 2.0m for l and 0.179kg/m3 for ρHe to find h .

0.050kg×h2.0m=43π(0.4m)3(1.20kg/m30.179kg/m3)0.250kgh=0.0237kg×2.0m0.050kg=0.948m

Conclusion:

Therefore, the length h of the string is 0.948m if mass of the string is 0.050kg .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Ο
Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures.                                     Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.     PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25

Chapter 14 Solutions

Physics for Scientists and Engineers With Modern Physics

Ch. 14 - Prob. 6OQCh. 14 - Prob. 7OQCh. 14 - Prob. 8OQCh. 14 - Prob. 9OQCh. 14 - Prob. 10OQCh. 14 - Prob. 11OQCh. 14 - Prob. 12OQCh. 14 - Prob. 13OQCh. 14 - Prob. 14OQCh. 14 - Prob. 15OQCh. 14 - Prob. 16OQCh. 14 - Prob. 1CQCh. 14 - Prob. 2CQCh. 14 - Prob. 3CQCh. 14 - Prob. 4CQCh. 14 - Prob. 5CQCh. 14 - Prob. 6CQCh. 14 - Prob. 7CQCh. 14 - Prob. 8CQCh. 14 - Prob. 9CQCh. 14 - Prob. 10CQCh. 14 - Prob. 11CQCh. 14 - Prob. 12CQCh. 14 - Prob. 13CQCh. 14 - Prob. 14CQCh. 14 - Prob. 15CQCh. 14 - Prob. 16CQCh. 14 - Prob. 17CQCh. 14 - Prob. 18CQCh. 14 - Prob. 19CQCh. 14 - A large man sits on a four-legged chair with his...Ch. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Estimate the total mass of the Earths atmosphere....Ch. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - Prob. 12PCh. 14 - Prob. 13PCh. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 17PCh. 14 - Review. A solid sphere of brass (bulk modulus of...Ch. 14 - Prob. 19PCh. 14 - The human brain and spinal cord are immersed in...Ch. 14 - Blaise Pascal duplicated Torricellis barometer...Ch. 14 - Prob. 22PCh. 14 - Prob. 23PCh. 14 - Prob. 24PCh. 14 - Prob. 25PCh. 14 - Prob. 26PCh. 14 - A 10.0-kg block of metal measuring 12.0 cm by 10.0...Ch. 14 - Prob. 28PCh. 14 - Prob. 29PCh. 14 - Prob. 30PCh. 14 - A plastic sphere floats in water with 50.0% of its...Ch. 14 - A spherical vessel used for deep-sea exploration...Ch. 14 - A wooden block of volume 5.24 104 m3 floats in...Ch. 14 - The weight of a rectangular block of low-density...Ch. 14 - Prob. 35PCh. 14 - A hydrometer is an instrument used to determine...Ch. 14 - Prob. 37PCh. 14 - Prob. 38PCh. 14 - Prob. 39PCh. 14 - Water flowing through a garden hose of diameter...Ch. 14 - Prob. 41PCh. 14 - Prob. 42PCh. 14 - Prob. 43PCh. 14 - Prob. 44PCh. 14 - A legendary Dutch boy saved Holland by plugging a...Ch. 14 - Prob. 46PCh. 14 - Water is pumped up from the Colorado River to...Ch. 14 - Prob. 48PCh. 14 - Prob. 49PCh. 14 - Review. Old Faithful Geyser in Yellowstone...Ch. 14 - Prob. 51PCh. 14 - An airplane has a mass of 1.60 104 kg, and each...Ch. 14 - Prob. 53PCh. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - Decades ago, it was thought that huge herbivorous...Ch. 14 - Prob. 57APCh. 14 - Prob. 58APCh. 14 - Prob. 59APCh. 14 - Prob. 60APCh. 14 - Prob. 61APCh. 14 - The true weight of an object can be measured in a...Ch. 14 - Prob. 63APCh. 14 - Review. Assume a certain liquid, with density 1...Ch. 14 - Prob. 65APCh. 14 - Prob. 66APCh. 14 - Prob. 67APCh. 14 - A common parameter that can be used to predict...Ch. 14 - Evangelista Torricelli was the first person to...Ch. 14 - Review. With reference to the dam studied in...Ch. 14 - Prob. 71APCh. 14 - Prob. 72APCh. 14 - In 1983, the United States began coining the...Ch. 14 - Prob. 74APCh. 14 - Prob. 75APCh. 14 - The spirit-in-glass thermometer, invented in...Ch. 14 - Prob. 77APCh. 14 - Review. In a water pistol, a piston drives water...Ch. 14 - Prob. 79APCh. 14 - Prob. 80APCh. 14 - Prob. 81APCh. 14 - A woman is draining her fish tank by siphoning the...Ch. 14 - Prob. 83APCh. 14 - Prob. 84APCh. 14 - Prob. 85CPCh. 14 - Prob. 86CPCh. 14 - Prob. 87CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning