Concept explainers
The escape velocity at the surface of white dwarfs of masses
Answer to Problem 5P
The escape velocity at the surface of white dwarfs of masses
Explanation of Solution
Necessary data is obtained from problem 1. Radius of
Write the equation to find the escape velocity.
Here,
Rewrite equation by substituting
Here,
Rewrite equation by substituting
Conclusion:
Substitute
Substitute
Therefore, the escape velocity at the surface of white dwarfs of masses
Want to see more full solutions like this?
Chapter 14 Solutions
Foundations of Astronomy (MindTap Course List)
- As we have discussed, Sirius B in the Sirius binary system is a white dwarf with MB ∼ 1M , LB ∼ 0.024L ,and rB ∼ 0.0084r . For such a white dwarf, the temperature at the center is estimated to be ∼ 107 K.If Sirius B’s luminosity were due to hydrogen fusion, what is the upper limit of the mass fraction of thehydrogen in such a white dwarf?Step 1: Calculate the observed energy production rate per unit mass (remember luminosity is energy outputper unit time).Step 2: Use the per unit mass energy generation rate of hydrogen fusion (via PP chain) to estimate thepossible hydrogen mass fraction given the condition at the center of the white dwarf.arrow_forwardWhat is the escape velocity (in km/s) from the surface of a 1.1 M neutron star? From a 3.0 M neutron star?arrow_forwardWhat is the escape velocity (in km/s) from the surface of a 1.1 M. neutron star? From a 3.0 M. neutron star? (Hint: Use the formula for escape velocity, V̟ = V 2GM ; make sure to express quantities in units of meters, kilograms, and seconds. Assume a neutron star has a radius of 11 km and assume the mass of the Sun is 1.99 x 1030 kg.) 1.1 M neutron star km/s 3.0 M. neutron star km/s If a neutron star has a radius of 12 km and a temperature of 8.0 x 10° K, how luminous is it? Express your answer in watts and also in solar luminosity units. (Hint: Use the relation Use 5,800 K for the surface temperature of the Sun. The luminosity of the Sun is 3.83 x 1026 w.) luminosity in watts luminosity in solar luminosity unitsarrow_forward
- What is the escape velocity (in km/s) from the surface of a 1.1 M. neutron star? From a 3.0 M, neutron star? (Hint: Use the formula for escape velocity, V̟ = 2GM -; make sure to express quantities in units of meters, kilograms, and seconds. Assume a neutron star has a radius of 11 km and assume the mass of the Sun is 1.99 × 1030 kg.) 1.1 M neutron star km/s 3.0 M. neutron star km/s If a neutron star has a radius of 12 km and a temperature of 8.0 x 10° K, how luminous is it? Express your answer in watts and also in solar luminosity units. (Hint: Use the relation . Use 5,800 K for the surface temperature of the Sun. The luminosity of the Sun is 3.83 x 1026 W.) luminosity in watts luminosity in solar luminosity units Loarrow_forwardCalculate the Kepler speed grazing the surface of a) a white dwarf, b) a neutron star. Give your answers in terms of the speed of light. (Take RNS = 10 km, RWD = 10 000 km, and MWD = MNS = 1 Msun.)arrow_forwardWe learned in class that, when stars collapse under their own gravity, they conserve angular momentum, which is proportional to mass times radius times rotational speed. Suppose the entire sun (radius 695,700 km) were to collapse to a neutron star with a radius of only 10 km. Before the collapse, the rotational speed at the equator = 2.0 km/s, and the rotational period is 25 days. Using the same steps that you used for the white dwarf calculations, calculate the final rotation period if the entire sun were to collapse to a 10 km radius neutron star. Give your answer in units of seconds. Answer: Checkarrow_forward
- Indicate whether the following statements are true or false. (Select T-True, F-False. If the first is T and the rest F, enter TFFFFF). A) White dwarfs are small dense objects about the size of the Earth. B) White dwarfs are composed mostly of hydrogen. C) A planetary nebula forms when a star violently explodes. D) A planetary nebula is the remnant of the outer envelope of a star. E) A white dwarf is the remnant of the star's core visible after the outer layers have been ejected.arrow_forwardWhat is the escape velocity (in km/s) from the surface of 1.1 M neutron star? (hint: Use the formula for the escape velocity Ve = 2GM/R ; make sure to express quantities in United of meters, kilograms, and seconds. Assume a neutron has a radius of 11 km and assume the mass of the sun is 1.99 x10^30 kg.) 1.1 M neutron Star = _________ km/s 3.0 neutron Star = __________ km/sarrow_forwardHow does a white dwarf differ from a neutron star? How does each form? What keeps each from collapsing under its own weight?arrow_forward
- What is the escape velocity from the white dwarf in Exercise 23.35? How much greater is it than the escape velocity from Earth?arrow_forwardHow would the spectra of a type II supernova be different from a type Ia supernova? Hint: Consider the characteristics of the objects that are their source.arrow_forwardDescribe the evolution of a white dwarf over time, in particular how the luminosity, temperature, and radius change.arrow_forward
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning